40 research outputs found

    Towards Dual-functional Radar-Communication Systems: Optimal Waveform Design

    Get PDF
    We focus on a dual-functional multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single transmitter communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered for minimizing the downlink multi-user interference. First, we consider both the omnidirectional and directional beampattern design problems, where the closed-form globally optimal solutions are obtained. Based on these waveforms, we further consider a weighted optimization to enable a flexible trade-off between radar and communications performance and introduce a low-complexity algorithm. The computational costs of the above three designs are shown to be similar to the conventional zero-forcing (ZF) precoding. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution and derive its worst-case complexity as a function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches by numerical results.Comment: 13 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    S-Lemma with Equality and Its Applications

    Full text link
    Let f(x)=xTAx+2aTx+cf(x)=x^TAx+2a^Tx+c and h(x)=xTBx+2bTx+dh(x)=x^TBx+2b^Tx+d be two quadratic functions having symmetric matrices AA and BB. The S-lemma with equality asks when the unsolvability of the system f(x)<0,h(x)=0f(x)<0, h(x)=0 implies the existence of a real number μ\mu such that f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n. The problem is much harder than the inequality version which asserts that, under Slater condition, f(x)<0,h(x)0f(x)<0, h(x)\le0 is unsolvable if and only if f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n for some μ0\mu\ge0. In this paper, we show that the S-lemma with equality does not hold only when the matrix AA has exactly one negative eigenvalue and h(x)h(x) is a non-constant linear function (B=0,b0B=0, b\not=0). As an application, we can globally solve inf{f(x)h(x)=0}\inf\{f(x)\vert h(x)=0\} as well as the two-sided generalized trust region subproblem inf{f(x)lh(x)u}\inf\{f(x)\vert l\le h(x)\le u\} without any condition. Moreover, the convexity of the joint numerical range {(f(x),h1(x),,hp(x)): xRn}\{(f(x), h_1(x),\ldots, h_p(x)):~x\in\Bbb R^n\} where ff is a (possibly non-convex) quadratic function and h1(x),,hp(x)h_1(x),\ldots,h_p(x) are affine functions can be characterized using the newly developed S-lemma with equality.Comment: 34 page

    Robust Joint Precoder and Equalizer Design in MIMO Communication Systems

    Full text link
    We address joint design of robust precoder and equalizer in a MIMO communication system using the minimization of weighted sum of mean square errors. In addition to imperfect knowledge of channel state information, we also account for inaccurate awareness of interference plus noise covariance matrix and power shaping matrix. We follow the worst-case model for imperfect knowledge of these matrices. First, we derive the worst-case values of these matrices. Then, we transform the joint precoder and equalizer optimization problem into a convex scalar optimization problem. Further, the solution to this problem will be simplified to a depressed quartic equation, the closed-form expressions for roots of which are known. Finally, we propose an iterative algorithm to obtain the worst-case robust transceivers.Comment: 2 figures, 5 pages, conferenc

    On the local stability of semidefinite relaxations

    Full text link
    We consider a parametric family of quadratically constrained quadratic programs (QCQP) and their associated semidefinite programming (SDP) relaxations. Given a nominal value of the parameter at which the SDP relaxation is exact, we study conditions (and quantitative bounds) under which the relaxation will continue to be exact as the parameter moves in a neighborhood around the nominal value. Our framework captures a wide array of statistical estimation problems including tensor principal component analysis, rotation synchronization, orthogonal Procrustes, camera triangulation and resectioning, essential matrix estimation, system identification, and approximate GCD. Our results can also be used to analyze the stability of SOS relaxations of general polynomial optimization problems.Comment: 23 pages, 3 figure
    corecore