4 research outputs found

    Algorithm Diversity for Resilient Systems

    Full text link
    Diversity can significantly increase the resilience of systems, by reducing the prevalence of shared vulnerabilities and making vulnerabilities harder to exploit. Work on software diversity for security typically creates variants of a program using low-level code transformations. This paper is the first to study algorithm diversity for resilience. We first describe how a method based on high-level invariants and systematic incrementalization can be used to create algorithm variants. Executing multiple variants in parallel and comparing their outputs provides greater resilience than executing one variant. To prevent different parallel schedules from causing variants' behaviors to diverge, we present a synchronized execution algorithm for DistAlgo, an extension of Python for high-level, precise, executable specifications of distributed algorithms. We propose static and dynamic metrics for measuring diversity. An experimental evaluation of algorithm diversity combined with implementation-level diversity for several sequential algorithms and distributed algorithms shows the benefits of algorithm diversity

    Exploring run-time reduction in programming codes via query optimization and caching

    Get PDF
    Object oriented programming languages raised the level of abstraction by supporting the explicit first class query constructs in the programming codes. These query constructs allow programmers to express operations on collections more abstractly than relying on their realization in loops or through provided libraries. Join optimization techniques from the field of database technology support efficient realizations of such language constructs. However, the problem associated with the existing techniques such as query optimization in Java Query Language (JQL) incurs run time overhead. Besides the programming languages supporting first-class query constructs, the usage of annotations has also increased in the software engineering community recently. Annotations are a common means of providing metadata information to the source code. The object oriented programming languages such as C# provides attributes constraints and Java has its own annotation constructs that allow the developers to include the metadata information in the program codes. This work introduces a series of query optimization approaches to reduce the run time of the programs involving explicit queries over collections. The proposed approaches rely on histograms to estimate the selectivity of the predicates and the joins in order to construct the query plans. The annotations in the source code are also utilized to gather the metadata required for the selectivity estimation of the numerical as well as the string valued predicates and joins in the queries. Several cache heuristics are proposed that effectively cache the results of repeated queries in the program codes. The cached query results are incrementally maintained up-to-date after the update operations to the collections --Abstract, page iv

    Incrementalization across object abstraction

    No full text
    Object abstraction supports the separation of what operations are provided by systems and components from how the operations are implemented, and is essential in enabling the construction of complex systems from components. Unfortunately, clear and modular implementations have poor performance when expensive query operations are repeated, while efficient implementations that incrementally maintain these query results are much more difficult to develop and to understand, because the code blows up significantly, and is no longer clear or modular. This paper describes a powerful and systematic method that first allows the “what ” of each component to be specified in a clear and modular fashion and implemented straightforwardly in an object-oriented language; then analyzes the queries and updates, across object abstraction, in the straightforward implementation; and finally derives the sophisticated and efficient “how ” of each component by incrementally maintaining the results of repeated expensive queries with respect to updates to their parameters. Our implementation and experimental results for example applications in query optimization, role-based access control, etc. demonstrate the effectiveness and benefit of the method
    corecore