9,928 research outputs found

    DeepFactors: Real-time probabilistic dense monocular SLAM

    Get PDF
    The ability to estimate rich geometry and camera motion from monocular imagery is fundamental to future interactive robotics and augmented reality applications. Different approaches have been proposed that vary in scene geometry representation (sparse landmarks, dense maps), the consistency metric used for optimising the multi-view problem, and the use of learned priors. We present a SLAM system that unifies these methods in a probabilistic framework while still maintaining real-time performance. This is achieved through the use of a learned compact depth map representation and reformulating three different types of errors: photometric, reprojection and geometric, which we make use of within standard factor graph software. We evaluate our system on trajectory estimation and depth reconstruction on real-world sequences and present various examples of estimated dense geometry

    RGBDTAM: A Cost-Effective and Accurate RGB-D Tracking and Mapping System

    Full text link
    Simultaneous Localization and Mapping using RGB-D cameras has been a fertile research topic in the latest decade, due to the suitability of such sensors for indoor robotics. In this paper we propose a direct RGB-D SLAM algorithm with state-of-the-art accuracy and robustness at a los cost. Our experiments in the RGB-D TUM dataset [34] effectively show a better accuracy and robustness in CPU real time than direct RGB-D SLAM systems that make use of the GPU. The key ingredients of our approach are mainly two. Firstly, the combination of a semi-dense photometric and dense geometric error for the pose tracking (see Figure 1), which we demonstrate to be the most accurate alternative. And secondly, a model of the multi-view constraints and their errors in the mapping and tracking threads, which adds extra information over other approaches. We release the open-source implementation of our approach 1 . The reader is referred to a video with our results 2 for a more illustrative visualization of its performance

    Low Power Depth Estimation of Rigid Objects for Time-of-Flight Imaging

    Full text link
    Depth sensing is useful in a variety of applications that range from augmented reality to robotics. Time-of-flight (TOF) cameras are appealing because they obtain dense depth measurements with minimal latency. However, for many battery-powered devices, the illumination source of a TOF camera is power hungry and can limit the battery life of the device. To address this issue, we present an algorithm that lowers the power for depth sensing by reducing the usage of the TOF camera and estimating depth maps using concurrently collected images. Our technique also adaptively controls the TOF camera and enables it when an accurate depth map cannot be estimated. To ensure that the overall system power for depth sensing is reduced, we design our algorithm to run on a low power embedded platform, where it outputs 640x480 depth maps at 30 frames per second. We evaluate our approach on several RGB-D datasets, where it produces depth maps with an overall mean relative error of 0.96% and reduces the usage of the TOF camera by 85%. When used with commercial TOF cameras, we estimate that our algorithm can lower the total power for depth sensing by up to 73%

    CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

    Full text link
    Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.Comment: 10 pages, 6 figures, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, June, 2017. The first two authors contribute equally to this pape
    • …
    corecore