8 research outputs found

    Glicci simplicial complexes

    Get PDF
    One of the main open questions in liaison theory is whether every homogeneous Cohen-Macaulay ideal in a polynomial ring is glicci, i.e. if it is in the G-liaison class of a complete intersection. We give an affirmative answer to this question for Stanley-Reisner ideals defined by simplicial complexes that are weakly vertex-decomposable. This class of complexes includes matroid, shifted and Gorenstein complexes respectively. Moreover, we construct a simplicial complex which shows that the property of being glicci depends on the characteristic of the base field. As an application of our methods we establish new evidence for two conjectures of Stanley on partitionable complexes and on Stanley decompositions

    Bounds for the collapsibility number of a simplicial complex and non-cover complexes of hypergraphs

    Full text link
    The collapsibility number of simplicial complexes was introduced by Wegner in order to understand the intersection patterns of convex sets. This number also plays an important role in a variety of Helly type results. There are only a few upper bounds for the collapsibility number of complexes available in literature. In general, it is difficult to establish such non-trivial upper bounds. In this article, we construct a sequence of upper bounds θk(X)\theta_k(X) for the collapsibility number of a simplicial complex XX. We also show that the bound given by θk\theta_k is tight if the underlying complex is kk-vertex decomposable. We then give an upper bound for θk\theta_k and therefore for the collapsibility number of the non-cover complex of a hypergraph in terms of its covering number

    The algebra of entanglement and the geometry of composition

    Full text link
    String diagrams turn algebraic equations into topological moves that have recurring shapes, involving the sliding of one diagram past another. We individuate, at the root of this fact, the dual nature of polygraphs as presentations of higher algebraic theories, and as combinatorial descriptions of "directed spaces". Operations of polygraphs modelled on operations of topological spaces are used as the foundation of a compositional universal algebra, where sliding moves arise from tensor products of polygraphs. We reconstruct several higher algebraic theories in this framework. In this regard, the standard formalism of polygraphs has some technical problems. We propose a notion of regular polygraph, barring cell boundaries that are not homeomorphic to a disk of the appropriate dimension. We define a category of non-degenerate shapes, and show how to calculate their tensor products. Then, we introduce a notion of weak unit to recover weakly degenerate boundaries in low dimensions, and prove that the existence of weak units is equivalent to a representability property. We then turn to applications of diagrammatic algebra to quantum theory. We re-evaluate the category of Hilbert spaces from the perspective of categorical universal algebra, which leads to a bicategorical refinement. Then, we focus on the axiomatics of fragments of quantum theory, and present the ZW calculus, the first complete diagrammatic axiomatisation of the theory of qubits. The ZW calculus has several advantages over ZX calculi, including a computationally meaningful normal form, and a fragment whose diagrams can be read as setups of fermionic oscillators. Moreover, its generators reflect an operational classification of entangled states of 3 qubits. We conclude with generalisations of the ZW calculus to higher-dimensional systems, including the definition of a universal set of generators in each dimension.Comment: v2: changes to end of Chapter 3. v1: 214 pages, many figures; University of Oxford doctoral thesi

    Subject Index Volumes 1–200

    Get PDF
    corecore