245,350 research outputs found
On the Enumeration of all Minimal Triangulations
We present an algorithm that enumerates all the minimal triangulations of a
graph in incremental polynomial time. Consequently, we get an algorithm for
enumerating all the proper tree decompositions, in incremental polynomial time,
where "proper" means that the tree decomposition cannot be improved by removing
or splitting a bag
Efficient training algorithms for HMMs using incremental estimation
Typically, parameter estimation for a hidden Markov model (HMM) is performed using an expectation-maximization (EM) algorithm with the maximum-likelihood (ML) criterion. The EM algorithm is an iterative scheme that is well-defined and numerically stable, but convergence may require a large number of iterations. For speech recognition systems utilizing large amounts of training material, this results in long training times. This paper presents an incremental estimation approach to speed-up the training of HMMs without any loss of recognition performance. The algorithm selects a subset of data from the training set, updates the model parameters based on the subset, and then iterates the process until convergence of the parameters. The advantage of this approach is a substantial increase in the number of iterations of the EM algorithm per training token, which leads to faster training. In order to achieve reliable estimation from a small fraction of the complete data set at each iteration, two training criteria are studied; ML and maximum a posteriori (MAP) estimation. Experimental results show that the training of the incremental algorithms is substantially faster than the conventional (batch) method and suffers no loss of recognition performance. Furthermore, the incremental MAP based training algorithm improves performance over the batch versio
Computing Aggregate Properties of Preimages for 2D Cellular Automata
Computing properties of the set of precursors of a given configuration is a
common problem underlying many important questions about cellular automata.
Unfortunately, such computations quickly become intractable in dimension
greater than one. This paper presents an algorithm --- incremental aggregation
--- that can compute aggregate properties of the set of precursors
exponentially faster than na{\"i}ve approaches. The incremental aggregation
algorithm is demonstrated on two problems from the two-dimensional binary Game
of Life cellular automaton: precursor count distributions and higher-order mean
field theory coefficients. In both cases, incremental aggregation allows us to
obtain new results that were previously beyond reach
- …
