245,350 research outputs found

    On the Enumeration of all Minimal Triangulations

    Full text link
    We present an algorithm that enumerates all the minimal triangulations of a graph in incremental polynomial time. Consequently, we get an algorithm for enumerating all the proper tree decompositions, in incremental polynomial time, where "proper" means that the tree decomposition cannot be improved by removing or splitting a bag

    Efficient training algorithms for HMMs using incremental estimation

    Get PDF
    Typically, parameter estimation for a hidden Markov model (HMM) is performed using an expectation-maximization (EM) algorithm with the maximum-likelihood (ML) criterion. The EM algorithm is an iterative scheme that is well-defined and numerically stable, but convergence may require a large number of iterations. For speech recognition systems utilizing large amounts of training material, this results in long training times. This paper presents an incremental estimation approach to speed-up the training of HMMs without any loss of recognition performance. The algorithm selects a subset of data from the training set, updates the model parameters based on the subset, and then iterates the process until convergence of the parameters. The advantage of this approach is a substantial increase in the number of iterations of the EM algorithm per training token, which leads to faster training. In order to achieve reliable estimation from a small fraction of the complete data set at each iteration, two training criteria are studied; ML and maximum a posteriori (MAP) estimation. Experimental results show that the training of the incremental algorithms is substantially faster than the conventional (batch) method and suffers no loss of recognition performance. Furthermore, the incremental MAP based training algorithm improves performance over the batch versio

    Computing Aggregate Properties of Preimages for 2D Cellular Automata

    Full text link
    Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm --- incremental aggregation --- that can compute aggregate properties of the set of precursors exponentially faster than na{\"i}ve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach
    corecore