2 research outputs found

    Incremental Scene Synthesis

    Full text link
    We present a method to incrementally generate complete 2D or 3D scenes with the following properties: (a) it is globally consistent at each step according to a learned scene prior, (b) real observations of a scene can be incorporated while observing global consistency, (c) unobserved regions can be hallucinated locally in consistence with previous observations, hallucinations and global priors, and (d) hallucinations are statistical in nature, i.e., different scenes can be generated from the same observations. To achieve this, we model the virtual scene, where an active agent at each step can either perceive an observed part of the scene or generate a local hallucination. The latter can be interpreted as the agent's expectation at this step through the scene and can be applied to autonomous navigation. In the limit of observing real data at each point, our method converges to solving the SLAM problem. It can otherwise sample entirely imagined scenes from prior distributions. Besides autonomous agents, applications include problems where large data is required for building robust real-world applications, but few samples are available. We demonstrate efficacy on various 2D as well as 3D data

    SceneGraphNet: Neural Message Passing for 3D Indoor Scene Augmentation

    Full text link
    In this paper we propose a neural message passing approach to augment an input 3D indoor scene with new objects matching their surroundings. Given an input, potentially incomplete, 3D scene and a query location, our method predicts a probability distribution over object types that fit well in that location. Our distribution is predicted though passing learned messages in a dense graph whose nodes represent objects in the input scene and edges represent spatial and structural relationships. By weighting messages through an attention mechanism, our method learns to focus on the most relevant surrounding scene context to predict new scene objects. We found that our method significantly outperforms state-of-the-art approaches in terms of correctly predicting objects missing in a scene based on our experiments in the SUNCG dataset. We also demonstrate other applications of our method, including context-based 3D object recognition and iterative scene generation.Comment: 8 pages, 8 figures, to appear in ICCV 201
    corecore