5,342 research outputs found

    Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models

    Get PDF
    International audienceModeling and predicting human and vehicle motion is an active research domain. Due to the difficulty of modeling the various factors that determine motion (e.g. internal state, perception, etc.) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use off-line learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. In this paper, we present an approach where motion patterns can be learned incrementally, and in parallel with prediction. Our work is based on a novel extension to Hidden Markov Models - called Growing Hidden Markov models - which gives us the ability to learn incrementally both the parameters and the structure of the model

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Models of motion patterns for mobile robotic systems

    Full text link
    Human robot interaction is an emerging area of research with many challenges. Knowledge about human behaviors could lead to more effective and efficient interactions of a robot in populated environments. This paper presents a probabilistic framework for the learning and representation of human motion patterns in an office environment. It is based on the observation that most human trajectories are not random. Instead people plan trajectories based on many considerations, such as social rules and path length. Motion patterns are learned using an incrementally growing Sampled Hidden Markov Model. This model has a number of interesting properties which can be of use in many applications. For example, the learned knowledge can be used to predict motion, infer social rules, thus improve a robot's operation and its interaction with people in a populated space. The proposed learning method is extensively validated in real world experiments. ©2010 IEEE

    Socially aware path planning for mobile robots

    Full text link
    © 2014 Cambridge University Press. Human-robot interaction is an emerging area of research where a robot may need to be working in human-populated environments. Human trajectories are generally not random and can belong to gross patterns. Knowledge about these patterns can be learned through observation. In this paper, we address the problem of a robot's social awareness by learning human motion patterns and integrating them in path planning. The gross motion patterns are learned using a novel Sampled Hidden Markov Model, which allows the integration of partial observations in dynamic model building. This model is used in the modified A∗ path planning algorithm to achieve socially aware trajectories. Novelty of the proposed method is that it can be used on a mobile robot for simultaneous online learning and path planning. The experiments carried out in an office environment show that the paths can be planned seamlessly, avoiding personal spaces of occupants

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    Understanding Vehicular Traffic Behavior from Video: A Survey of Unsupervised Approaches

    Full text link
    Recent emerging trends for automatic behavior analysis and understanding from infrastructure video are reviewed. Research has shifted from high-resolution estimation of vehicle state and instead, pushed machine learning approaches to extract meaningful patterns in aggregates in an unsupervised fashion. These patterns represent priors on observable motion, which can be utilized to describe a scene, answer behavior questions such as where is a vehicle going, how many vehicles are performing the same action, and to detect an abnormal event. The review focuses on two main methods for scene description, trajectory clustering and topic modeling. Example applications that utilize the behavioral modeling techniques are also presented. In addition, the most popular public datasets for behavioral analysis are presented. Discussion and comment on future directions in the field are also provide
    corecore