4 research outputs found

    Parsing Model and a Rational Theory of Memory

    Get PDF
    This paper explores how the rational theory of memory summarized in Anderson (1991) can inform the computational psycholinguistic models of human parsing. It is shown that transition-based parsing is particularly suitable to be combined with Anderson's theory of memory systems. The combination of the rational theory of memory with the transition-based parsers results in a model of sentence processing that is data-driven and can be embedded in the cognitive architecture Adaptive Control of Thought-Rational (ACT-R). The predictions of the parser are tested against qualitative data (garden-path sentences) and a self-paced reading corpus (the Natural Stories corpus)

    Incremental Discontinuous Phrase Structure Parsing with the GAP Transition

    No full text
    International audienceThis article introduces a novel transition system for discontinuous lexicalized constituent parsing called SR-GAP. It is an extension of the shift-reduce algorithm with an additional gap transition. Evaluation on two German treebanks shows that SR-GAP outperforms the previous best transition-based discontinuous parser (Maier, 2015) by a large margin (it is notably twice as accurate on the prediction of discontinuous constituents), and is competitive with the state of the art (Fernández-González and Martins, 2015). As a side contribution, we adapt span features (Hall et al., 2014) to discontinuous parsing

    Two characterisation results of multiple context-free grammars and their application to parsing

    Get PDF
    In the first part of this thesis, a Chomsky-SchĂĽtzenberger characterisation and an automaton characterisation of multiple context-free grammars are proved. Furthermore, a framework for approximation of automata with storage is described. The second part develops each of the three theoretical results into a parsing algorithm
    corecore