126 research outputs found

    Lexicalized semi-incremental dependency parsing

    Get PDF
    Even leaving aside concerns of cognitive plausibility, incremental parsing is appealing for applications such as speech recognition and machine translation because it could allow for incorporating syntactic features into the decoding process without blowing up the search space. Yet, incremental parsing is often associated with greedy parsing decisions and intolerable loss of accuracy. Would the use of lexicalized grammars provide a new perspective on incremental parsing? In this paper we explore incremental left-to-right dependency parsing using a lexicalized grammatical formalism that works with lexical categories (supertags) and a small set of combinatory operators. A strictly incremental parser would conduct only a single pass over the input, use no lookahead and make only local decisions at every word. We show that such a parser suffers heavy loss of accuracy. Instead, we explore the utility of a two-pass approach that incrementally builds a dependency structure by first assigning a supertag to every input word and then selecting an incremental operator that allows assembling every supertag with the dependency structure built so-far to its left. We instantiate this idea in different models that allow a trade-off between aspects of full incrementality and performance, and explore the differences between these models empirically. Our exploration shows that a semi-incremental (two-pass), linear-time parser that employs fixed and limited look-ahead exhibits an appealing balance between the efficiency advantages of incrementality and the achieved accuracy. Surprisingly, taking local or global decisions matters very little for the accuracy of this linear-time parser. Such a parser fits seemlessly with the currently dominant finite-state decoders for machine translation

    On the Challenges of Fully Incremental Neural Dependency Parsing

    Full text link
    Since the popularization of BiLSTMs and Transformer-based bidirectional encoders, state-of-the-art syntactic parsers have lacked incrementality, requiring access to the whole sentence and deviating from human language processing. This paper explores whether fully incremental dependency parsing with modern architectures can be competitive. We build parsers combining strictly left-to-right neural encoders with fully incremental sequence-labeling and transition-based decoders. The results show that fully incremental parsing with modern architectures considerably lags behind bidirectional parsing, noting the challenges of psycholinguistically plausible parsing.Comment: Accepted at IJCNLP-AACL 202

    A syntactified direct translation model with linear-time decoding

    Get PDF
    Recent syntactic extensions of statistical translation models work with a synchronous context-free or tree-substitution grammar extracted from an automatically parsed parallel corpus. The decoders accompanying these extensions typically exceed quadratic time complexity. This paper extends the Direct Translation Model 2 (DTM2) with syntax while maintaining linear-time decoding. We employ a linear-time parsing algorithm based on an eager, incremental interpretation of Combinatory Categorial Grammar (CCG). As every input word is processed, the local parsing decisions resolve ambiguity eagerly, by selecting a single supertag–operator pair for extending the dependency parse incrementally. Alongside translation features extracted from the derived parse tree, we explore syntactic features extracted from the incremental derivation process. Our empirical experiments show that our model significantly outperforms the state-of-the art DTM2 system

    Non-distributional Word Vector Representations

    Full text link
    Data-driven representation learning for words is a technique of central importance in NLP. While indisputably useful as a source of features in downstream tasks, such vectors tend to consist of uninterpretable components whose relationship to the categories of traditional lexical semantic theories is tenuous at best. We present a method for constructing interpretable word vectors from hand-crafted linguistic resources like WordNet, FrameNet etc. These vectors are binary (i.e, contain only 0 and 1) and are 99.9% sparse. We analyze their performance on state-of-the-art evaluation methods for distributional models of word vectors and find they are competitive to standard distributional approaches.Comment: Proceedings of ACL 201

    On Multilingual Training of Neural Dependency Parsers

    Full text link
    We show that a recently proposed neural dependency parser can be improved by joint training on multiple languages from the same family. The parser is implemented as a deep neural network whose only input is orthographic representations of words. In order to successfully parse, the network has to discover how linguistically relevant concepts can be inferred from word spellings. We analyze the representations of characters and words that are learned by the network to establish which properties of languages were accounted for. In particular we show that the parser has approximately learned to associate Latin characters with their Cyrillic counterparts and that it can group Polish and Russian words that have a similar grammatical function. Finally, we evaluate the parser on selected languages from the Universal Dependencies dataset and show that it is competitive with other recently proposed state-of-the art methods, while having a simple structure.Comment: preprint accepted into the TSD201

    One model, two languages: training bilingual parsers with harmonized treebanks

    Full text link
    We introduce an approach to train lexicalized parsers using bilingual corpora obtained by merging harmonized treebanks of different languages, producing parsers that can analyze sentences in either of the learned languages, or even sentences that mix both. We test the approach on the Universal Dependency Treebanks, training with MaltParser and MaltOptimizer. The results show that these bilingual parsers are more than competitive, as most combinations not only preserve accuracy, but some even achieve significant improvements over the corresponding monolingual parsers. Preliminary experiments also show the approach to be promising on texts with code-switching and when more languages are added.Comment: 7 pages, 4 tables, 1 figur
    corecore