2 research outputs found

    PAI-BPR: Personalized Outfit Recommendation Scheme with Attribute-wise Interpretability

    Full text link
    Fashion is an important part of human experience. Events such as interviews, meetings, marriages, etc. are often based on clothing styles. The rise in the fashion industry and its effect on social influencing have made outfit compatibility a need. Thus, it necessitates an outfit compatibility model to aid people in clothing recommendation. However, due to the highly subjective nature of compatibility, it is necessary to account for personalization. Our paper devises an attribute-wise interpretable compatibility scheme with personal preference modelling which captures user-item interaction along with general item-item interaction. Our work solves the problem of interpretability in clothing matching by locating the discordant and harmonious attributes between fashion items. Extensive experiment results on IQON3000, a publicly available real-world dataset, verify the effectiveness of the proposed model.Comment: 10 pages, 5 figures, to be published in IEEE BigMM, 202

    Towards Unsupervised Crowd Counting via Regression-Detection Bi-knowledge Transfer

    Full text link
    Unsupervised crowd counting is a challenging yet not largely explored task. In this paper, we explore it in a transfer learning setting where we learn to detect and count persons in an unlabeled target set by transferring bi-knowledge learnt from regression- and detection-based models in a labeled source set. The dual source knowledge of the two models is heterogeneous and complementary as they capture different modalities of the crowd distribution. We formulate the mutual transformations between the outputs of regression- and detection-based models as two scene-agnostic transformers which enable knowledge distillation between the two models. Given the regression- and detection-based models and their mutual transformers learnt in the source, we introduce an iterative self-supervised learning scheme with regression-detection bi-knowledge transfer in the target. Extensive experiments on standard crowd counting benchmarks, ShanghaiTech, UCF\_CC\_50, and UCF\_QNRF demonstrate a substantial improvement of our method over other state-of-the-arts in the transfer learning setting.Comment: This paper has been accepted by ACM MM 2020(Oral
    corecore