9,641 research outputs found

    Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation

    Full text link
    Session-based recommendation (SR) has become an important and popular component of various e-commerce platforms, which aims to predict the next interacted item based on a given session. Most of existing SR models only focus on exploiting the consecutive items in a session interacted by a certain user, to capture the transition pattern among the items. Although some of them have been proven effective, the following two insights are often neglected. First, a user's micro-behaviors, such as the manner in which the user locates an item, the activities that the user commits on an item (e.g., reading comments, adding to cart), offer fine-grained and deep understanding of the user's preference. Second, the item attributes, also known as item knowledge, provide side information to model the transition pattern among interacted items and alleviate the data sparsity problem. These insights motivate us to propose a novel SR model MKM-SR in this paper, which incorporates user Micro-behaviors and item Knowledge into Multi-task learning for Session-based Recommendation. Specifically, a given session is modeled on micro-behavior level in MKM-SR, i.e., with a sequence of item-operation pairs rather than a sequence of items, to capture the transition pattern in the session sufficiently. Furthermore, we propose a multi-task learning paradigm to involve learning knowledge embeddings which plays a role as an auxiliary task to promote the major task of SR. It enables our model to obtain better session representations, resulting in more precise SR recommendation results. The extensive evaluations on two benchmark datasets demonstrate MKM-SR's superiority over the state-of-the-art SR models, justifying the strategy of incorporating knowledge learning

    Side Information-Driven Session-based Recommendation: A Survey

    Full text link
    The session-based recommendation (SBR) garners increasing attention due to its ability to predict anonymous user intents within limited interactions. Emerging efforts incorporate various kinds of side information into their methods for enhancing task performance. In this survey, we thoroughly review the side information-driven session-based recommendation from a data-centric perspective. Our survey commences with an illustration of the motivation and necessity behind this research topic. This is followed by a detailed exploration of various benchmarks rich in side information, pivotal for advancing research in this field. Moreover, we delve into how these diverse types of side information enhance SBR, underscoring their characteristics and utility. A systematic review of research progress is then presented, offering an analysis of the most recent and representative developments within this topic. Finally, we present the future prospects of this vibrant topic.Comment: This is a survey on side information-driven session-based recommendatio

    Hierarchical Multi-Task Learning Framework for Session-based Recommendations

    Full text link
    While session-based recommender systems (SBRSs) have shown superior recommendation performance, multi-task learning (MTL) has been adopted by SBRSs to enhance their prediction accuracy and generalizability further. Hierarchical MTL (H-MTL) sets a hierarchical structure between prediction tasks and feeds outputs from auxiliary tasks to main tasks. This hierarchy leads to richer input features for main tasks and higher interpretability of predictions, compared to existing MTL frameworks. However, the H-MTL framework has not been investigated in SBRSs yet. In this paper, we propose HierSRec which incorporates the H-MTL architecture into SBRSs. HierSRec encodes a given session with a metadata-aware Transformer and performs next-category prediction (i.e., auxiliary task) with the session encoding. Next, HierSRec conducts next-item prediction (i.e., main task) with the category prediction result and session encoding. For scalable inference, HierSRec creates a compact set of candidate items (e.g., 4% of total items) per test example using the category prediction. Experiments show that HierSRec outperforms existing SBRSs as per next-item prediction accuracy on two session-based recommendation datasets. The accuracy of HierSRec measured with the carefully-curated candidate items aligns with the accuracy of HierSRec calculated with all items, which validates the usefulness of our candidate generation scheme via H-MTL.Comment: Accepted at the 6th Workshop on Online Recommender Systems and User Modeling @ ACM RecSys 202

    Session-Based Recommendation by Exploiting Substitutable and Complementary Relationships from Multi-behavior Data

    Full text link
    Session-based recommendation (SR) aims to dynamically recommend items to a user based on a sequence of the most recent user-item interactions. Most existing studies on SR adopt advanced deep learning methods. However, the majority only consider a special behavior type (e.g., click), while those few considering multi-typed behaviors ignore to take full advantage of the relationships between products (items). In this case, the paper proposes a novel approach, called Substitutable and Complementary Relationships from Multi-behavior Data (denoted as SCRM) to better explore the relationships between products for effective recommendation. Specifically, we firstly construct substitutable and complementary graphs based on a user's sequential behaviors in every session by jointly considering `click' and `purchase' behaviors. We then design a denoising network to remove false relationships, and further consider constraints on the two relationships via a particularly designed loss function. Extensive experiments on two e-commerce datasets demonstrate the superiority of our model over state-of-the-art methods, and the effectiveness of every component in SCRM.Comment: 31 pages,11 figures, accepted by Data Mining and Knowledge Discovery(2023

    User Modeling and User Profiling: A Comprehensive Survey

    Full text link
    The integration of artificial intelligence (AI) into daily life, particularly through information retrieval and recommender systems, has necessitated advanced user modeling and profiling techniques to deliver personalized experiences. These techniques aim to construct accurate user representations based on the rich amounts of data generated through interactions with these systems. This paper presents a comprehensive survey of the current state, evolution, and future directions of user modeling and profiling research. We provide a historical overview, tracing the development from early stereotype models to the latest deep learning techniques, and propose a novel taxonomy that encompasses all active topics in this research area, including recent trends. Our survey highlights the paradigm shifts towards more sophisticated user profiling methods, emphasizing implicit data collection, multi-behavior modeling, and the integration of graph data structures. We also address the critical need for privacy-preserving techniques and the push towards explainability and fairness in user modeling approaches. By examining the definitions of core terminology, we aim to clarify ambiguities and foster a clearer understanding of the field by proposing two novel encyclopedic definitions of the main terms. Furthermore, we explore the application of user modeling in various domains, such as fake news detection, cybersecurity, and personalized education. This survey serves as a comprehensive resource for researchers and practitioners, offering insights into the evolution of user modeling and profiling and guiding the development of more personalized, ethical, and effective AI systems.Comment: 71 page

    Enhancing Item-level Bundle Representation for Bundle Recommendation

    Full text link
    Bundle recommendation approaches offer users a set of related items on a particular topic. The current state-of-the-art (SOTA) method utilizes contrastive learning to learn representations at both the bundle and item levels. However, due to the inherent difference between the bundle-level and item-level preferences, the item-level representations may not receive sufficient information from the bundle affiliations to make accurate predictions. In this paper, we propose a novel approach EBRec, short of Enhanced Bundle Recommendation, which incorporates two enhanced modules to explore inherent item-level bundle representations. First, we propose to incorporate the bundle-user-item (B-U-I) high-order correlations to explore more collaborative information, thus to enhance the previous bundle representation that solely relies on the bundle-item affiliation information. Second, we further enhance the B-U-I correlations by augmenting the observed user-item interactions with interactions generated from pre-trained models, thus improving the item-level bundle representations. We conduct extensive experiments on three public datasets, and the results justify the effectiveness of our approach as well as the two core modules. Codes and datasets are available at https://github.com/answermycode/EBRec

    Micro-behavior encoding for session-based recommendation

    Get PDF
    Session-based recommendation (SR) aims to predict the next item for recommendation based on previously recorded sessions of user interaction. The majority of existing approaches to SR focus on modeling the transition patterns of items. In such models, the so-called micro-behaviors describing how the user locates an item and carries out various activities on it (e.g., click, add-to-cart, and read-comments), are simply ignored. A few recent studies have tried to incorporate the sequential patterns of micro-behaviors into SR models. However, those sequential models still cannot effectively capture all the inherent interdependencies between micro-behavior operations. In this work, we aim to investigate the effects of the micro-behavior information in SR systematically. Specifically, we identify two different patterns of micro-behaviors: ``sequential patterns'' and ``dyadic relational patterns''. To build a unified model of user micro-behaviors, we first devise a multigraph to aggregate the sequential patterns from different items via a graph neural network, and then utilize an extended self-attention network to exploit the pair-wise relational patterns of micro-behaviors. Extensive experiments on three public real-world datasets show the superiority of the proposed approach over the state-of-the-art baselines and confirm the usefulness of these two different micro-behavior patterns for SR
    • …
    corecore