24,136 research outputs found

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models

    Training Curricula for Open Domain Answer Re-Ranking

    Full text link
    In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques.Comment: Accepted at SIGIR 2020 (long

    Contextualizing Citations for Scientific Summarization using Word Embeddings and Domain Knowledge

    Full text link
    Citation texts are sometimes not very informative or in some cases inaccurate by themselves; they need the appropriate context from the referenced paper to reflect its exact contributions. To address this problem, we propose an unsupervised model that uses distributed representation of words as well as domain knowledge to extract the appropriate context from the reference paper. Evaluation results show the effectiveness of our model by significantly outperforming the state-of-the-art. We furthermore demonstrate how an effective contextualization method results in improving citation-based summarization of the scientific articles.Comment: SIGIR 201

    A Vertical PRF Architecture for Microblog Search

    Full text link
    In microblog retrieval, query expansion can be essential to obtain good search results due to the short size of queries and posts. Since information in microblogs is highly dynamic, an up-to-date index coupled with pseudo-relevance feedback (PRF) with an external corpus has a higher chance of retrieving more relevant documents and improving ranking. In this paper, we focus on the research question:how can we reduce the query expansion computational cost while maintaining the same retrieval precision as standard PRF? Therefore, we propose to accelerate the query expansion step of pseudo-relevance feedback. The hypothesis is that using an expansion corpus organized into verticals for expanding the query, will lead to a more efficient query expansion process and improved retrieval effectiveness. Thus, the proposed query expansion method uses a distributed search architecture and resource selection algorithms to provide an efficient query expansion process. Experiments on the TREC Microblog datasets show that the proposed approach can match or outperform standard PRF in MAP and NDCG@30, with a computational cost that is three orders of magnitude lower.Comment: To appear in ICTIR 201
    • …
    corecore