766 research outputs found

    Incorporating Joint Embeddings into Goal-Oriented Dialogues with Multi-Task Learning

    Full text link
    Attention-based encoder-decoder neural network models have recently shown promising results in goal-oriented dialogue systems. However, these models struggle to reason over and incorporate state-full knowledge while preserving their end-to-end text generation functionality. Since such models can greatly benefit from user intent and knowledge graph integration, in this paper we propose an RNN-based end-to-end encoder-decoder architecture which is trained with joint embeddings of the knowledge graph and the corpus as input. The model provides an additional integration of user intent along with text generation, trained with a multi-task learning paradigm along with an additional regularization technique to penalize generating the wrong entity as output. The model further incorporates a Knowledge Graph entity lookup during inference to guarantee the generated output is state-full based on the local knowledge graph provided. We finally evaluated the model using the BLEU score, empirical evaluation depicts that our proposed architecture can aid in the betterment of task-oriented dialogue system`s performance.Comment: The Semantic Web - 16th International Conference, ESWC 2019, Portoro\v{z}, Slovenia, June 2-6, 2019, Proceedings, page 225-23

    Sequential Dialogue Context Modeling for Spoken Language Understanding

    Full text link
    Spoken Language Understanding (SLU) is a key component of goal oriented dialogue systems that would parse user utterances into semantic frame representations. Traditionally SLU does not utilize the dialogue history beyond the previous system turn and contextual ambiguities are resolved by the downstream components. In this paper, we explore novel approaches for modeling dialogue context in a recurrent neural network (RNN) based language understanding system. We propose the Sequential Dialogue Encoder Network, that allows encoding context from the dialogue history in chronological order. We compare the performance of our proposed architecture with two context models, one that uses just the previous turn context and another that encodes dialogue context in a memory network, but loses the order of utterances in the dialogue history. Experiments with a multi-domain dialogue dataset demonstrate that the proposed architecture results in reduced semantic frame error rates.Comment: 8 + 2 pages, Updated 10/17: Updated typos in abstract, Updated 07/07: Updated Title, abstract and few minor change

    Evaluating the Representational Hub of Language and Vision Models

    Get PDF
    The multimodal models used in the emerging field at the intersection of computational linguistics and computer vision implement the bottom-up processing of the `Hub and Spoke' architecture proposed in cognitive science to represent how the brain processes and combines multi-sensory inputs. In particular, the Hub is implemented as a neural network encoder. We investigate the effect on this encoder of various vision-and-language tasks proposed in the literature: visual question answering, visual reference resolution, and visually grounded dialogue. To measure the quality of the representations learned by the encoder, we use two kinds of analyses. First, we evaluate the encoder pre-trained on the different vision-and-language tasks on an existing diagnostic task designed to assess multimodal semantic understanding. Second, we carry out a battery of analyses aimed at studying how the encoder merges and exploits the two modalities.Comment: Accepted to IWCS 201

    A Unified Framework for Slot based Response Generation in a Multimodal Dialogue System

    Full text link
    Natural Language Understanding (NLU) and Natural Language Generation (NLG) are the two critical components of every conversational system that handles the task of understanding the user by capturing the necessary information in the form of slots and generating an appropriate response in accordance with the extracted information. Recently, dialogue systems integrated with complementary information such as images, audio, or video have gained immense popularity. In this work, we propose an end-to-end framework with the capability to extract necessary slot values from the utterance and generate a coherent response, thereby assisting the user to achieve their desired goals in a multimodal dialogue system having both textual and visual information. The task of extracting the necessary information is dependent not only on the text but also on the visual cues present in the dialogue. Similarly, for the generation, the previous dialog context comprising multimodal information is significant for providing coherent and informative responses. We employ a multimodal hierarchical encoder using pre-trained DialoGPT and also exploit the knowledge base (Kb) to provide a stronger context for both the tasks. Finally, we design a slot attention mechanism to focus on the necessary information in a given utterance. Lastly, a decoder generates the corresponding response for the given dialogue context and the extracted slot values. Experimental results on the Multimodal Dialogue Dataset (MMD) show that the proposed framework outperforms the baselines approaches in both the tasks. The code is available at https://github.com/avinashsai/slot-gpt.Comment: Published in the journal Multimedia Tools and Application
    • …
    corecore