27 research outputs found

    Nonmonotonic Probabilistic Logics between Model-Theoretic Probabilistic Logic and Probabilistic Logic under Coherence

    Full text link
    Recently, it has been shown that probabilistic entailment under coherence is weaker than model-theoretic probabilistic entailment. Moreover, probabilistic entailment under coherence is a generalization of default entailment in System P. In this paper, we continue this line of research by presenting probabilistic generalizations of more sophisticated notions of classical default entailment that lie between model-theoretic probabilistic entailment and probabilistic entailment under coherence. That is, the new formalisms properly generalize their counterparts in classical default reasoning, they are weaker than model-theoretic probabilistic entailment, and they are stronger than probabilistic entailment under coherence. The new formalisms are useful especially for handling probabilistic inconsistencies related to conditioning on zero events. They can also be applied for probabilistic belief revision. More generally, in the same spirit as a similar previous paper, this paper sheds light on exciting new formalisms for probabilistic reasoning beyond the well-known standard ones.Comment: 10 pages; in Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR-2002), Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, pages 265-274, Toulouse, France, April 200

    Belief Revision with Uncertain Inputs in the Possibilistic Setting

    Full text link
    This paper discusses belief revision under uncertain inputs in the framework of possibility theory. Revision can be based on two possible definitions of the conditioning operation, one based on min operator which requires a purely ordinal scale only, and another based on product, for which a richer structure is needed, and which is a particular case of Dempster's rule of conditioning. Besides, revision under uncertain inputs can be understood in two different ways depending on whether the input is viewed, or not, as a constraint to enforce. Moreover, it is shown that M.A. Williams' transmutations, originally defined in the setting of Spohn's functions, can be captured in this framework, as well as Boutilier's natural revision.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996
    corecore