2,226 research outputs found

    The MM Alternative to EM

    Full text link
    The EM algorithm is a special case of a more general algorithm called the MM algorithm. Specific MM algorithms often have nothing to do with missing data. The first M step of an MM algorithm creates a surrogate function that is optimized in the second M step. In minimization, MM stands for majorize--minimize; in maximization, it stands for minorize--maximize. This two-step process always drives the objective function in the right direction. Construction of MM algorithms relies on recognizing and manipulating inequalities rather than calculating conditional expectations. This survey walks the reader through the construction of several specific MM algorithms. The potential of the MM algorithm in solving high-dimensional optimization and estimation problems is its most attractive feature. Our applications to random graph models, discriminant analysis and image restoration showcase this ability.Comment: Published in at http://dx.doi.org/10.1214/08-STS264 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Data-driven satisficing measure and ranking

    Full text link
    We propose an computational framework for real-time risk assessment and prioritizing for random outcomes without prior information on probability distributions. The basic model is built based on satisficing measure (SM) which yields a single index for risk comparison. Since SM is a dual representation for a family of risk measures, we consider problems constrained by general convex risk measures and specifically by Conditional value-at-risk. Starting from offline optimization, we apply sample average approximation technique and argue the convergence rate and validation of optimal solutions. In online stochastic optimization case, we develop primal-dual stochastic approximation algorithms respectively for general risk constrained problems, and derive their regret bounds. For both offline and online cases, we illustrate the relationship between risk ranking accuracy with sample size (or iterations).Comment: 26 Pages, 6 Figure

    ChoiceRank: Identifying Preferences from Node Traffic in Networks

    Get PDF
    Understanding how users navigate in a network is of high interest in many applications. We consider a setting where only aggregate node-level traffic is observed and tackle the task of learning edge transition probabilities. We cast it as a preference learning problem, and we study a model where choices follow Luce's axiom. In this case, the O(n)O(n) marginal counts of node visits are a sufficient statistic for the O(n2)O(n^2) transition probabilities. We show how to make the inference problem well-posed regardless of the network's structure, and we present ChoiceRank, an iterative algorithm that scales to networks that contains billions of nodes and edges. We apply the model to two clickstream datasets and show that it successfully recovers the transition probabilities using only the network structure and marginal (node-level) traffic data. Finally, we also consider an application to mobility networks and apply the model to one year of rides on New York City's bicycle-sharing system.Comment: Accepted at ICML 201

    The incomplete Analytic Hierarchy Process and Bradley-Terry model: (in)consistency and information retrieval

    Full text link
    Several methods of preference modeling, ranking, voting and multi-criteria decision making include pairwise comparisons. It is usually simpler to compare two objects at a time, furthermore, some relations (e.g., the outcome of sports matches) are naturally known for pairs. This paper investigates and compares pairwise comparison models and the stochastic Bradley-Terry model. It is proved that they provide the same priority vectors for consistent (complete or incomplete) comparisons. For incomplete comparisons, all filling in levels are considered. Recent results identified the optimal subsets and sequences of multiplicative/additive/reciprocal pairwise comparisons for small sizes of items (up to n = 6). Simulations of this paper show that the same subsets and sequences are optimal in case of the Bradley-Terry and the Thurstone models as well. This, somehow surprising, coincidence suggests the existence of a more general result. Further models of information and preference theory are subject to future investigation in order to identify optimal subsets of input data

    Revisiting Random Utility Models

    Get PDF
    This thesis explores extensions of Random Utility Models (RUMs), providing more flexible models and adopting a computational perspective. This includes building new models and understanding their properties such as identifiability and the log concavity of their likelihood functions as well as the development of estimation algorithms.Engineering and Applied Science
    corecore