2,907,377 research outputs found

    Inclusion ideals and inclusion problems: Parsons and Luhmann on religion and secularization

    Get PDF
    This paper builds upon the theoretical work of Talcott Parsons and Niklas Luhmann and offers a critical reconstruction of their views on religion (Christianity) and secularization in the western world. It discusses the relation between the functional differentiation of modern society, the individualization of inclusion imperatives and the changing expectations regarding inclusion/exclusion in religious communication. From this perspective, it analyzes secularization in terms of perceived problems of inclusion in religious communication, and in terms of the reactions of Christian religions to these perceived problems. It thereby shows how the theories of Parsons and Luhmann are useful for empirical and historical research, and how they open up new perspectives for empirical and historical research

    Generalized Forward-Backward Splitting with Penalization for Monotone Inclusion Problems

    Full text link
    We introduce a generalized forward-backward splitting method with penalty term for solving monotone inclusion problems involving the sum of a finite number of maximally monotone operators and the normal cone to the nonempty set of zeros of another maximal monotone operator. We show weak ergodic convergence of the generated sequence of iterates to a solution of the considered monotone inclusion problem, provided the condition corresponded to the Fitzpatrick function of the operator describing the set of the normal cone is fulfilled. Under strong monotonicity of an operator, we show strong convergence of the iterates. Furthermore, we utilize the proposed method for minimizing a large-scale hierarchical minimization problem concerning the sum of differentiable and nondifferentiable convex functions subject to the set of minima of another differentiable convex function. We illustrate the functionality of the method through numerical experiments addressing constrained elastic net and generalized Heron location problems

    Inertial Douglas-Rachford splitting for monotone inclusion problems

    Full text link
    We propose an inertial Douglas-Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties. To this end we formulate first the inertial version of the Krasnosel'ski\u{\i}--Mann algorithm for approximating the set of fixed points of a nonexpansive operator, for which we also provide an exhaustive convergence analysis. By using a product space approach we employ these results to the solving of monotone inclusion problems involving linearly composed and parallel-sum type operators and provide in this way iterative schemes where each of the maximally monotone mappings is accessed separately via its resolvent. We consider also the special instance of solving a primal-dual pair of nonsmooth convex optimization problems and illustrate the theoretical results via some numerical experiments in clustering and location theory.Comment: arXiv admin note: text overlap with arXiv:1402.529
    corecore