556,304 research outputs found

    Possible relation between pulsar rotation and evolution of magnetic inclination

    Get PDF
    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.Comment: 4 pages, 3 figure

    A numerical exploration of Miranda's dynamical history

    Full text link
    The Uranian satellite Miranda presents a high inclination (4.338{\deg}) and evidences of resurfacing. It is accepted since 20 years (e.g. Tittemore and Wisdom 1989, Malhotra and Dermott 1990) that this inclination is due to the past trapping into the 3:1 resonance with Umbriel. These last years there is a renewal of interest for the Uranian system since the Hubble Space Telescope permitted the detection of an inner system of rings and small embedded satellites, their dynamics being of course ruled by the main satellites. For this reason, we here propose to revisit the long-term dynamics of Miranda, using modern tools like intensive computing facilities and new chaos indicators (MEGNO and frequency map analysis). As in the previous studies, we find the resonance responsible for the inclination of Miranda and the secondary resonances associated, likely to have stopped the rise of Miranda's inclination at 4.5{\deg}. Moreover, we get other trajectories in which this inclination reaches 7{\deg}. We also propose an analytical study of the secondary resonances associated, based on the study by Moons and Henrard (1993).Comment: 14 pages, 8 figure

    A Correlation Between Inclination and Color in the Classical Kuiper Belt

    Get PDF
    We have measured broadband optical BVR photometry of 24 Classical and Scattered Kuiper belt objects (KBOs), approximately doubling the published sample of colors for these classes of objects. We find a statistically significant correlation between object color and inclination in the Classical Kuiper belt using our data. The color and inclination correlation increases in significance after the inclusion of additional data points culled from all published works. Apparently, this color and inclination correlation has not been more widely reported because the Plutinos show no such correlation, and thus have been a major contaminant in previous samples. The color and inclination correlation excludes simple origins of color diversity, such as the presence of a coloring agent without regard to dynamical effects. Unfortunately, our current knowledge of the Kuiper belt precludes us from understanding whether the color and inclination trend is due to environmental factors, such as collisional resurfacing, or primordial population effects. A perihelion and color correlation is also evident, although this appears to be a spurious correlation induced by sampling bias, as perihelion and inclination are correlated in the observed sample of KBOs.Comment: Accepted to Astrophysical Journal Letter

    The Search for Stellar Companions to Exoplanet Host Stars Using the CHARA Array

    Full text link
    Most exoplanets have been discovered via radial velocity studies, which are inherently insensitive to orbital inclination. Interferometric observations will show evidence of a stellar companion if it sufficiently bright, regardless of the inclination. Using the CHARA Array, we observed 22 exoplanet host stars to search for stellar companions in low-inclination orbits that may be masquerading as planetary systems. While no definitive stellar companions were discovered, it was possible to rule out certain secondary spectral types for each exoplanet system observed by studying the errors in the diameter fit to calibrated visibilities and by searching for separated fringe packets.Comment: 26 pages, 5 tables, 8 figure

    Effect of Inclination of Galaxies on Photometric Redshift

    Full text link
    The inclination of galaxies induces both reddening and extinction to their observed spectral energy distribution, which in turn impact the derived properties of the galaxies. Here we report a significant dependence of the error in photometric redshift (photo-z) on the inclination of disk galaxies from the Sloan Digital Sky Survey. The bias in the photo-z based on the template-fitting approach increases from -0.015 in face-on to 0.021 in edge-on galaxies. A Principal Component Analysis on the full sample of photometry reveals the inclination of the galaxies to be represented by the 2nd mode. The corresponding eigenspectrum resembles an extinction curve. The isolation of the inclination effect in a low-order mode demonstrates the significant reddening induced on the observed colors, leading to the over-estimated photo-z in galaxies of high inclinations. We present approaches to correct the photo-z and the other properties of the disk galaxies against the inclination effect.Comment: Accepted for publication in Ap

    Inclination Measurement of Human Movement Using a 3-D Accelerometer With Autocalibration

    Get PDF
    In the medical field, accelerometers are often used for measuring inclination of body segments and activity of daily living (ADL) because they are small and require little power. A drawback of using accelerometers is the poor quality of inclination estimate for movements with large accelerations. This paper describes the design and performance of a Kalman filter to estimate inclination from the signals of a triaxial accelerometer. This design is based on assumptions concerning the frequency content of the acceleration of the movement that is measured, the knowledge that the magnitude of the gravity is 1 g and taking into account a fluctuating sensor offset. It is shown that for measuring trunk and pelvis inclination during the functional three-dimensional activity of stacking crates, the inclination error that is made is approximately 2/spl deg/ root-mean square. This is nearly twice as accurate as compared to current methods based on low-pass filtering of accelerometer signals

    Chaotic dynamics of the planet in HD 196885 AB

    Full text link
    Depending on the planetary orbit around the host star(s), a planet could orbit either one or both stars in a binary system as S-type or P-type, respectively. We have analysed the dynamics of the S-type planetary system in HD 196885 AB with an emphasis on a planet with a higher orbital inclination relative to the binary plane. The mean exponential growth factor of nearby orbits (MEGNO) maps are used as an indicator to determine regions of periodicity and chaos for the various choices of the planet's semimajor axis, eccentricity and inclination with respect to the previously determined observational uncertainties. We have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space which indicate a likely regime of the planet's inclination. In addition, we inspect the resonant angle to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a very large inclination. Also, we demonstrate the possible higher mass limit of the planet and improve upon the current dynamical model based on our analysis.Comment: 10 pages, 9 figures (Accepted for publication at MNRAS
    corecore