152 research outputs found

    Inside-Out Polytopes

    Get PDF
    We present a common generalization of counting lattice points in rational polytopes and the enumeration of proper graph colorings, nowhere-zero flows on graphs, magic squares and graphs, antimagic squares and graphs, compositions of an integer whose parts are partially distinct, and generalized latin squares. Our method is to generalize Ehrhart's theory of lattice-point counting to a convex polytope dissected by a hyperplane arrangement. We particularly develop the applications to graph and signed-graph coloring, compositions of an integer, and antimagic labellings.Comment: 24 pages, 3 figures; to appear in Adv. Mat

    Combinatorial Structures in Hypercubes

    Get PDF

    Throttling for the game of Cops and Robbers on graphs

    Get PDF
    We consider the cop-throttling number of a graph GG for the game of Cops and Robbers, which is defined to be the minimum of (k+captk(G))(k + \text{capt}_k(G)), where kk is the number of cops and captk(G)\text{capt}_k(G) is the minimum number of rounds needed for kk cops to capture the robber on GG over all possible games. We provide some tools for bounding the cop-throttling number, including showing that the positive semidefinite (PSD) throttling number, a variant of zero forcing throttling, is an upper bound for the cop-throttling number. We also characterize graphs having low cop-throttling number and investigate how large the cop-throttling number can be for a given graph. We consider trees, unicyclic graphs, incidence graphs of finite projective planes (a Meyniel extremal family of graphs), a family of cop-win graphs with maximum capture time, grids, and hypercubes. All the upper bounds on the cop-throttling number we obtain for families of graphs are O(n) O(\sqrt n).Comment: 22 pages, 4 figure

    Fast Recognition of Partial Star Products and Quasi Cartesian Products

    Get PDF
    This paper is concerned with the fast computation of a relation R\R on the edge set of connected graphs that plays a decisive role in the recognition of approximate Cartesian products, the weak reconstruction of Cartesian products, and the recognition of Cartesian graph bundles with a triangle free basis. A special case of R\R is the relation δ∗\delta^\ast, whose convex closure yields the product relation σ\sigma that induces the prime factor decomposition of connected graphs with respect to the Cartesian product. For the construction of R\R so-called Partial Star Products are of particular interest. Several special data structures are used that allow to compute Partial Star Products in constant time. These computations are tuned to the recognition of approximate graph products, but also lead to a linear time algorithm for the computation of δ∗\delta^\ast for graphs with maximum bounded degree. Furthermore, we define \emph{quasi Cartesian products} as graphs with non-trivial δ∗\delta^\ast. We provide several examples, and show that quasi Cartesian products can be recognized in linear time for graphs with bounded maximum degree. Finally, we note that quasi products can be recognized in sublinear time with a parallelized algorithm
    • …
    corecore