6 research outputs found

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)

    コグニティブネットワークとヘテロジニアスネットワークの協調によるスペクトルの効率的利用に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 瀬崎 薫, 東京大学教授 浅見 徹, 東京大学教授 江崎 浩, 東京大学准教授 川原 圭博, 東京大学教授 森川 博之, 東京大学教授 相田 仁University of Tokyo(東京大学

    ADVANCES IN COOPERATON TECHNIQUES FOR WIRELESS COMMUNICATION NETWORKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Incentivize Spectrum Leasing in Cognitive Radio Networks by Exploiting Cooperative Retransmission

    No full text
    This paper addresses the spectrum leasing issue in cognitive radio networks by exploiting the secondary user’s cooperative retransmission. In contrast with the previous researches that focuses on cancellationbased or coding-based cooperative retransmissions, we propose a novel trading-based mechanism to facilitate the cooperative retransmission for cognitive radio networks. By utilizing the Stackelberg game model, we incentivize the otherwise non-cooperative users by maximizing their utilities in terms of transmission rates and economic profit. We analyze the existence of the unique Nash equilibrium of the game, and provide the optimal solutions with corresponding constraints. Numerical results demonstrate the efficiency of the proposed mechanism, under which the performance of the whole system could be substantially improved

    THE AIRCRAFT MAINTENANCE ENGINEER COMPETENCE WITHIN THE CONTEXT OF AVIATION SAFETY REGULATIONS

    Get PDF
    This thesis is intended to serve as a guide for operation of a flight safety function within international safety organizations. This paper is specifically focused on the impact of European Aviation Safety Agency (EASA) Regulations as they are strongly applied to Aircraft Maintenance. The paper is intended on responsibilities for releasing Aircraft Maintenance Engineer License to sign off aircraft for flight. It also includes guidance to competency requirements of the Aircraft Maintenance Engineer
    corecore