347 research outputs found

    Optimum Statistical Estimation with Strategic Data Sources

    Full text link
    We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples

    A Stochastic Team Formation Approach for Collaborative Mobile Crowdsourcing

    Full text link
    Mobile Crowdsourcing (MCS) is the generalized act of outsourcing sensing tasks, traditionally performed by employees or contractors, to a large group of smart-phone users by means of an open call. With the increasing complexity of the crowdsourcing applications, requesters find it essential to harness the power of collaboration among the workers by forming teams of skilled workers satisfying their complex tasks' requirements. This type of MCS is called Collaborative MCS (CMCS). Previous CMCS approaches have mainly focused only on the aspect of team skills maximization. Other team formation studies on social networks (SNs) have only focused on social relationship maximization. In this paper, we present a hybrid approach where requesters are able to hire a team that, not only has the required expertise, but also is socially connected and can accomplish tasks collaboratively. Because team formation in CMCS is proven to be NP-hard, we develop a stochastic algorithm that exploit workers knowledge about their SN neighbors and asks a designated leader to recruit a suitable team. The proposed algorithm is inspired from the optimal stopping strategies and uses the odds-algorithm to compute its output. Experimental results show that, compared to the benchmark exponential optimal solution, the proposed approach reduces computation time and produces reasonable performance results.Comment: This paper is accepted for publication in 2019 31st International Conference on Microelectronics (ICM

    Optimizing Wirelessly Powered Crowd Sensing: Trading energy for data

    Full text link
    To overcome the limited coverage in traditional wireless sensor networks, \emph{mobile crowd sensing} (MCS) has emerged as a new sensing paradigm. To achieve longer battery lives of user devices and incentive human involvement, this paper presents a novel approach that seamlessly integrates MCS with wireless power transfer, called \emph{wirelessly powered crowd sensing} (WPCS), for supporting crowd sensing with energy consumption and offering rewards as incentives. The optimization problem is formulated to simultaneously maximize the data utility and minimize the energy consumption for service operator, by jointly controlling wireless-power allocation at the \emph{access point} (AP) as well as sensing-data size, compression ratio, and sensor-transmission duration at \emph{mobile sensor} (MS). Given the fixed compression ratios, the optimal power allocation policy is shown to have a \emph{threshold}-based structure with respect to a defined \emph{crowd-sensing priority} function for each MS. Given fixed sensing-data utilities, the compression policy achieves the optimal compression ratio. Extensive simulations are also presented to verify the efficiency of the contributed mechanisms.Comment: arXiv admin note: text overlap with arXiv:1711.0206

    Predicting worker disagreement for more effective crowd labeling

    Get PDF
    Crowdsourcing is a popular mechanism used for labeling tasks to produce large corpora for training. However, producing a reliable crowd labeled training corpus is challenging and resource consuming. Research on crowdsourcing has shown that label quality is much affected by worker engagement and expertise. In this study, we postulate that label quality can also be affected by inherent ambiguity of the documents to be labeled. Such ambiguities are not known in advance, of course, but, once encountered by the workers, they lead to disagreement in the labeling – a disagreement that cannot be resolved by employing more workers. To deal with this problem, we propose a crowd labeling framework: we train a disagreement predictor on a small seed of documents, and then use this predictor to decide which documents of the complete corpus should be labeled and which should be checked for document-inherent ambiguities before assigning (and potentially wasting) worker effort on them. We report on the findings of the experiments we conducted on crowdsourcing a Twitter corpus for sentiment classification

    Incentivize crowd labeling under budget constraint

    Full text link

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    corecore