17,734 research outputs found

    More security or less insecurity (transcript of discussion)

    Get PDF
    The purpose of this talk is to explore the possibility of an exploitable analogy between approaches to secure system design and theories of jurisprudence. The prevailing theory of jurisprudence in the West at the moment goes back to Hobbes. It was developed by Immanuel Kant and later by Rousseau, and is sometimes called the contractarian model after Rousseau’s idea of the social contract. It’s not the sort of contract that you look at and think, oh gosh, that might be nice, I might think about opting in to that, it’s more like a pop up licence agreement that says, do you want to comply with this contract, or would you rather be an outlaw. So you don’t get a lot of choice about it. Sometimes the same theory, flying the flag of Immanuel Kant, is called transcendental institutionalism, because the basic approach says, you identify the legal institutions that in a perfect world would govern society, and then you look at the processes and procedures, the protocols that everyone should follow in order to enable those institutions to work, and then you say, right, that can’t be transcended, so therefore there’s a moral imperative for everyone to do it. So this model doesn’t pay any attention to the actual society that emerges, or to the incentives that these processes actually place on various people to act in a particular way. It doesn’t look at any interaction effects, it simply says, well you have to behave in this particular way because that’s what the law says you have to do, and the law is the law, and anybody who doesn’t behave in that way is a criminal, or (in our terms) is an attackerFinal Accepted Versio

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework

    Recent Advances and Success of Zero-Knowledge Security Protocols

    Get PDF
    How someone can get health insurance without sharing his health infor-mation? How you can get a loan without disclosing your credit score? There is a method to certify certain attributes of various data, either this is health metrics or finance information, without revealing the data itself or any other kind of personal data. This method is known as “zero-knowledge proofs”. Zero-Knowledge techniques are mathematical methods used to verify things without sharing or revealing underlying data. Zero-Knowledge protocols have vast applications from simple identity schemes and blockchains to de-fense research programs and nuclear arms control. In this article we present the basic principles behind ZKP technology, possible applications and the threats and vulnerabilities that it is subject to and we review proposed securi-ty solutions

    SoK: Consensus in the Age of Blockchains

    Get PDF
    The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours

    Be Cool! Staying Open Minded About Climate Policy Development

    Get PDF

    An Efficient Toolkit for Computing Private Set Operations

    Get PDF
    Private set operation (PSO) protocols provide a natural way of securely performing operations on data sets, such that crucial details of the input sets are not revealed. Such protocols have an ever-increasing number of practical applications, particularly when implementing privacy-preserving data mining schemes. Protocols for computing private set operations have been prevalent in multi-party computation literature over the past decade, and in the case of private set intersection (PSI), have become practically feasible to run in real applications. In contrast, other set operations such as union have received less attention from the research community, and the few existing designs are often limited in their feasibility. In this work we aim to fill this gap, and present a new technique using Bloom filter data structures and additive homomorphic encryption to develop the first private set union protocol with both linear computation and communication complexities. Moreover, we show how to adapt this protocol to give novel ways of computing PSI and private set intersection/union cardinality with only minor changes to the protocol computation. Our work resembles therefore a toolkit for scalable private set computation with linear complexities, and we provide a thorough experimental analysis that shows that the online phase of our designs is practical up to large set sizes

    The Fourth National Security Summit: Approaches to Passenger Screening, MTI S-08-01

    Get PDF
    The Fourth National Security Summit: Approaches to Passenger Screening is the transcript of a symposium held on March 14, 2007. It was sponsored by the Mineta Transportation Institute and the American Public Transportation Association. For this symposium, numerous experts on security and terrorism, public policy makers, transit executives, and members of law enforcement were invited to participate in an open forum. Topics of discussion included: how public transportation is vulnerable to terrorist attack, and how public transportation has become a target for terrorist both in the United States and abroad; what techniques in screening can be considered the most realistic, reliable and effective; what new technologies may provide public transportation with increased security; how federal training programs and federal funds can most effectively be implemented and distributed nationwide; and finally, the best techniques in preventing terrorist attacks and mitigating risk
    • …
    corecore