4 research outputs found

    Adaptive Energy Aware Cooperation Strategy in Heterogeneous Multi-domain Sensor Networks

    Get PDF
    AbstractIn some applications of sensor networks, multi-domain exists and cooperation among domains could lead to longer lifetime. In this paper, we consider heterogeneous multi-domain sensor networks. It means that different networks belong to different domains and sensors are deployed at the same physical location and their topology is heterogonous. Apparently, domains life time can be increased by means of cooperation in packet forwarding; however selfishness is inevitable from rational perspective. We investigate this problem to find out cooperation of authorities while their sensors are energy aware. When sensors are energy aware, spontaneous cooperation cannot take place. Therefore we presented the Adaptive Energy Aware strategy, a novel algorithm that is based on TIT-FOR-TAT, starts with generosity and ends up with conservative behaviour. Our simulation results showed that this algorithm could prolong its network lifetime in competition with other networks

    Trust Dynamics in WSNs: An Evolutionary Game-Theoretic Approach

    Get PDF
    A sensor node (SN) in Wireless Sensor Networks (WSNs) can decide whether to collaborate with others based on a trust management system (TMS) by making a trust decision. In this paper, we study the trust decision and its dynamics that play a key role to stabilize the whole network using evolutionary game theory. When SNs are making their decisions to select action Trust or Mistrust, a WSNs trust game is created to reflect their utilities. An incentive mechanism bound with one SN’s trust degree is incorporated into this trust game and effectively promotes SNs to select action Trust. The replicator dynamics of SNs’ trust evolution, illustrating the evolutionary process of SNs selecting their actions, are given. We then propose and prove the theorems indicating that evolutionarily stable strategies can be attained under different parameter values, which supply theoretical foundations to devise a TMS for WSNs. Moreover, we can find out the conditions that will lead SNs to choose action Trust as their final behavior. In this manner, we can assure WSNs’ security and stability by introducing a trust mechanism to satisfy these conditions. Experimental results have confirmed the proposed theorems and the effects of the incentive mechanism
    corecore