5,286 research outputs found
Approximation Hardness of Graphic TSP on Cubic Graphs
We prove explicit approximation hardness results for the Graphic TSP on cubic
and subcubic graphs as well as the new inapproximability bounds for the
corresponding instances of the (1,2)-TSP. The proof technique uses new modular
constructions of simulating gadgets for the restricted cubic and subcubic
instances. The modular constructions used in the paper could be also of
independent interest
Super-polylogarithmic hypergraph coloring hardness via low-degree long codes
We prove improved inapproximability results for hypergraph coloring using the
low-degree polynomial code (aka, the 'short code' of Barak et. al. [FOCS 2012])
and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate
this code for inapproximability results. In particular, we prove
quasi-NP-hardness of the following problems on -vertex hyper-graphs:
* Coloring a 2-colorable 8-uniform hypergraph with
colors.
* Coloring a 4-colorable 4-uniform hypergraph with
colors.
* Coloring a 3-colorable 3-uniform hypergraph with colors.
In each of these cases, the hardness results obtained are (at least)
exponentially stronger than what was previously known for the respective cases.
In fact, prior to this result, polylog n colors was the strongest quantitative
bound on the number of colors ruled out by inapproximability results for
O(1)-colorable hypergraphs.
The fundamental bottleneck in obtaining coloring inapproximability results
using the low- degree long code was a multipartite structural restriction in
the PCP construction of Dinur-Guruswami. We are able to get around this
restriction by simulating the multipartite structure implicitly by querying
just one partition (albeit requiring 8 queries), which yields our result for
2-colorable 8-uniform hypergraphs. The result for 4-colorable 4-uniform
hypergraphs is obtained via a 'query doubling' method. For 3-colorable
3-uniform hypergraphs, we exploit the ternary domain to design a test with an
additive (as opposed to multiplicative) noise function, and analyze its
efficacy in killing high weight Fourier coefficients via the pseudorandom
properties of an associated quadratic form.Comment: 25 page
Inapproximability of Combinatorial Optimization Problems
We survey results on the hardness of approximating combinatorial optimization
problems
Inapproximability of Maximum Biclique Problems, Minimum -Cut and Densest At-Least--Subgraph from the Small Set Expansion Hypothesis
The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly
states that it is NP-hard to distinguish between a graph with a small subset of
vertices whose edge expansion is almost zero and one in which all small subsets
of vertices have expansion almost one. In this work, we prove inapproximability
results for the following graph problems based on this hypothesis:
- Maximum Edge Biclique (MEB): given a bipartite graph , find a complete
bipartite subgraph of with maximum number of edges.
- Maximum Balanced Biclique (MBB): given a bipartite graph , find a
balanced complete bipartite subgraph of with maximum number of vertices.
- Minimum -Cut: given a weighted graph , find a set of edges with
minimum total weight whose removal partitions into connected
components.
- Densest At-Least--Subgraph (DALS): given a weighted graph , find a
set of at least vertices such that the induced subgraph on has
maximum density (the ratio between the total weight of edges and the number of
vertices).
We show that, assuming SSEH and NP BPP, no polynomial time
algorithm gives -approximation for MEB or MBB for every
constant . Moreover, assuming SSEH, we show that it is NP-hard
to approximate Minimum -Cut and DALS to within factor
of the optimum for every constant .
The ratios in our results are essentially tight since trivial algorithms give
-approximation to both MEB and MBB and efficient -approximation
algorithms are known for Minimum -Cut [SV95] and DALS [And07, KS09].
Our first result is proved by combining a technique developed by Raghavendra
et al. [RST12] to avoid locality of gadget reductions with a generalization of
Bansal and Khot's long code test [BK09] whereas our second result is shown via
elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a
different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced
Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis
From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More
We consider questions that arise from the intersection between the areas of
polynomial-time approximation algorithms, subexponential-time algorithms, and
fixed-parameter tractable algorithms. The questions, which have been asked
several times (e.g., [Marx08, FGMS12, DF13]), are whether there is a
non-trivial FPT-approximation algorithm for the Maximum Clique (Clique) and
Minimum Dominating Set (DomSet) problems parameterized by the size of the
optimal solution. In particular, letting be the optimum and be
the size of the input, is there an algorithm that runs in
time and outputs a solution of size
, for any functions and that are independent of (for
Clique, we want )?
In this paper, we show that both Clique and DomSet admit no non-trivial
FPT-approximation algorithm, i.e., there is no
-FPT-approximation algorithm for Clique and no
-FPT-approximation algorithm for DomSet, for any function
(e.g., this holds even if is the Ackermann function). In fact, our results
imply something even stronger: The best way to solve Clique and DomSet, even
approximately, is to essentially enumerate all possibilities. Our results hold
under the Gap Exponential Time Hypothesis (Gap-ETH) [Dinur16, MR16], which
states that no -time algorithm can distinguish between a satisfiable
3SAT formula and one which is not even -satisfiable for some
constant .
Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for
Maximum Balanced Biclique, Maximum Subgraphs with Hereditary Properties, and
Maximum Induced Matching in bipartite graphs. Additionally, we rule out
-FPT-approximation algorithm for Densest -Subgraph although this
ratio does not yet match the trivial -approximation algorithm.Comment: 43 pages. To appear in FOCS'1
Improved Inapproximability Results for Maximum k-Colorable Subgraph
We study the maximization version of the fundamental graph coloring problem.
Here the goal is to color the vertices of a k-colorable graph with k colors so
that a maximum fraction of edges are properly colored (i.e. their endpoints
receive different colors). A random k-coloring properly colors an expected
fraction 1-1/k of edges. We prove that given a graph promised to be
k-colorable, it is NP-hard to find a k-coloring that properly colors more than
a fraction ~1-O(1/k} of edges. Previously, only a hardness factor of 1-O(1/k^2)
was known. Our result pins down the correct asymptotic dependence of the
approximation factor on k. Along the way, we prove that approximating the
Maximum 3-colorable subgraph problem within a factor greater than 32/33 is
NP-hard. Using semidefinite programming, it is known that one can do better
than a random coloring and properly color a fraction 1-1/k +2 ln k/k^2 of edges
in polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard to
properly color (using k colors) more than a fraction 1-1/k + O(ln k/ k^2) of
edges of a k-colorable graph.Comment: 16 pages, 2 figure
- …
