5,286 research outputs found

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    Super-polylogarithmic hypergraph coloring hardness via low-degree long codes

    Full text link
    We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the 'short code' of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results. In particular, we prove quasi-NP-hardness of the following problems on nn-vertex hyper-graphs: * Coloring a 2-colorable 8-uniform hypergraph with 22Ω(loglogn)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 4-colorable 4-uniform hypergraph with 22Ω(loglogn)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 3-colorable 3-uniform hypergraph with (logn)Ω(1/logloglogn)(\log n)^{\Omega(1/\log\log\log n)} colors. In each of these cases, the hardness results obtained are (at least) exponentially stronger than what was previously known for the respective cases. In fact, prior to this result, polylog n colors was the strongest quantitative bound on the number of colors ruled out by inapproximability results for O(1)-colorable hypergraphs. The fundamental bottleneck in obtaining coloring inapproximability results using the low- degree long code was a multipartite structural restriction in the PCP construction of Dinur-Guruswami. We are able to get around this restriction by simulating the multipartite structure implicitly by querying just one partition (albeit requiring 8 queries), which yields our result for 2-colorable 8-uniform hypergraphs. The result for 4-colorable 4-uniform hypergraphs is obtained via a 'query doubling' method. For 3-colorable 3-uniform hypergraphs, we exploit the ternary domain to design a test with an additive (as opposed to multiplicative) noise function, and analyze its efficacy in killing high weight Fourier coefficients via the pseudorandom properties of an associated quadratic form.Comment: 25 page

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More

    Full text link
    We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g., [Marx08, FGMS12, DF13]), are whether there is a non-trivial FPT-approximation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set (DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT\text{OPT} be the optimum and NN be the size of the input, is there an algorithm that runs in t(OPT)poly(N)t(\text{OPT})\text{poly}(N) time and outputs a solution of size f(OPT)f(\text{OPT}), for any functions tt and ff that are independent of NN (for Clique, we want f(OPT)=ω(1)f(\text{OPT})=\omega(1))? In this paper, we show that both Clique and DomSet admit no non-trivial FPT-approximation algorithm, i.e., there is no o(OPT)o(\text{OPT})-FPT-approximation algorithm for Clique and no f(OPT)f(\text{OPT})-FPT-approximation algorithm for DomSet, for any function ff (e.g., this holds even if ff is the Ackermann function). In fact, our results imply something even stronger: The best way to solve Clique and DomSet, even approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Exponential Time Hypothesis (Gap-ETH) [Dinur16, MR16], which states that no 2o(n)2^{o(n)}-time algorithm can distinguish between a satisfiable 3SAT formula and one which is not even (1ϵ)(1 - \epsilon)-satisfiable for some constant ϵ>0\epsilon > 0. Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for Maximum Balanced Biclique, Maximum Subgraphs with Hereditary Properties, and Maximum Induced Matching in bipartite graphs. Additionally, we rule out ko(1)k^{o(1)}-FPT-approximation algorithm for Densest kk-Subgraph although this ratio does not yet match the trivial O(k)O(k)-approximation algorithm.Comment: 43 pages. To appear in FOCS'1

    Improved Inapproximability Results for Maximum k-Colorable Subgraph

    Full text link
    We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring properly colors an expected fraction 1-1/k of edges. We prove that given a graph promised to be k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction ~1-O(1/k} of edges. Previously, only a hardness factor of 1-O(1/k^2) was known. Our result pins down the correct asymptotic dependence of the approximation factor on k. Along the way, we prove that approximating the Maximum 3-colorable subgraph problem within a factor greater than 32/33 is NP-hard. Using semidefinite programming, it is known that one can do better than a random coloring and properly color a fraction 1-1/k +2 ln k/k^2 of edges in polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1-1/k + O(ln k/ k^2) of edges of a k-colorable graph.Comment: 16 pages, 2 figure
    corecore