22 research outputs found

    Linear response methods for accurate covariance estimates from mean field variational bayes

    Get PDF
    Mean field variational Bayes (MFVB) is a popular posterior approximation method due to its fast runtime on large-scale data sets. However, a well known failing of MFVB is that it underestimates the uncertainty of model variables (sometimes severely) and provides no information about model variable covariance. We generalize linear response methods from statistical physics to deliver accurate uncertainty estimates for model variables---both for individual variables and coherently across variables. We call our method linear response variational Bayes (LRVB). When the MFVB posterior approximation is in the exponential family, LRVB has a simple, analytic form, even for non-conjugate models. Indeed, we make no assumptions about the form of the true posterior. We demonstrate the accuracy and scalability of our method on a range of models for both simulated and real data

    Fitting Structural Equation Models via Variational Approximations

    Full text link
    Structural equation models are commonly used to capture the relationship between sets of observed and unobservable variables. Traditionally these models are fitted using frequentist approaches but recently researchers and practitioners have developed increasing interest in Bayesian inference. In Bayesian settings, inference for these models is typically performed via Markov chain Monte Carlo methods, which may be computationally intensive for models with a large number of manifest variables or complex structures. Variational approximations can be a fast alternative; however, they have not been adequately explored for this class of models. We develop a mean field variational Bayes approach for fitting elemental structural equation models and demonstrate how bootstrap can considerably improve the variational approximation quality. We show that this variational approximation method can provide reliable inference while being significantly faster than Markov chain Monte Carlo
    corecore