3,567 research outputs found

    Persistent Vascular Collagen Accumulation Alters Hemodynamic Recovery from Chronic Hypoxia

    Get PDF
    Pulmonary arterial hypertension (PAH) is caused by narrowing and stiffening of the pulmonary arteries that increase pulmonary vascular impedance (PVZ). In particular, small arteries narrow and large arteries stiffen. Large pulmonary artery (PA) stiffness is the best current predictor of mortality from PAH. We have previously shown that collagen accumulation leads to extralobar PA stiffening at high strain (Ooi et al. 2010). We hypothesized that collagen accumulation would increase PVZ, including total pulmonary vascular resistance (Z0), characteristic impedance (ZC), pulse wave velocity (PWV) and index of global wave reflections (Pb/Pf), which contribute to increased right ventricular afterload. We tested this hypothesis by exposing mice unable to degrade type I collagen (Col1a1R/R) to 21 days of hypoxia (hypoxia), some of which were allowed to recover for 42 days (recovery). Littermate wild-type mice (Col1a1+/+) were used as controls. In response to hypoxia, mean PA pressure (mPAP) increased in both mouse genotypes with no changes in cardiac output (CO) or PA inner diameter (ID); as a consequence, Z0 (mPAP/CO) increased by ∌100% in both genotypes (pZC, PWV and Pb/Pf did not change. However, with recovery, ZC and PWV decreased in the Col1a1+/+ mice and remained unchanged in the Col1a1R/R mice. Z0 decreased with recovery in both genotypes. Microcomputed tomography measurements of large PAs did not show evidence of stiffness changes as a function of hypoxia exposure or genotype. We conclude that hypoxia-induced PA collagen accumulation does not affect the pulsatile components of pulmonary hemodynamics but that excessive collagen accumulation does prevent normal hemodynamic recovery, which may have important consequences for right ventricular function

    Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study

    Get PDF
    Quantitative, non-invasive and local measurements of arterial mechanical properties could be highly beneficial for early diagnosis of cardiovascular disease and follow up of treatment. Arterial shear wave elastography (SWE) and wave velocity dispersion analysis have previously been applied to measure arterial stiffness. Arterial wall thickness (h) and inner diameter (D) vary with age and pathology and may influence the shear wave propagation. Nevertheless, the effect of arterial geometry in SWE has not yet been systematically investigated. In this study the influence of geometry on the estimated mechanical properties of plates (h = 0.5–3 mm) and hollow cylinders (h = 1, 2 and 3 mm, D = 6 mm) was assessed by experiments in phantoms and by finite element method simulations. In addition, simulations in hollow cylinders with wall thickness difficult to achieve in phantoms were performed (h = 0.5–1.3 mm, D = 5–8 mm). The phase velocity curves obtained from experiments and simulations were compared in the frequency range 200–1000 Hz and showed good agreement (R2 = 0.80 ± 0.07 for plates and R2 = 0.82 ± 0.04 for hollow cylinders). Wall thickness had a larger effect than diameter on the dispersion curves, which did not have major effects above 400 Hz. An underestimation of 0.1–0.2 mm in wall thickness introduces an error 4–9 kPa in hollow cylinders with shear modulus of 21–26 kPa. Therefore, wall thickness should correctly be measured in arterial SWE applications for accurate mechanical properties estimation

    Validation of a 1D Algorithm That Measures Pulse Wave Velocity to Estimate Compliance in Blood Vessels

    Get PDF
    The purpose of this research is to determine if it is possible to validate the new 1D method for measuring pulse wave velocity in the aorta in vivo and estimate compliance. Arterial pressure and blood flow characterize the traveling of blood from the heart to the arterial system and have played a significant role in the evaluation of cardiovascular diseases. Blood vessel distensibility can give some information on the evolution of cardiovascular disease. A patient’s aorta cannot be explanted to measure compliance; therefore we are using a flow phantom model to validate the 1D pulse wave velocity technique to estimate compliance

    Evidence of endothelial dysfunction in the development of Alzheimer's disease : Is Alzheimer's a vascular disorder?

    Get PDF
    Acknowledgements Dr Soiza is funded by an NRS Career Research Fellowship. The authors are grateful to Alzheimer’s Research UK for providing funding.Peer reviewedPublisher PD

    Vascular smooth muscle Sirtuin-1 protects against aortic dissection during Angiotensin II-induced hypertension

    Get PDF
    BACKGROUND: Sirtuin-1 (SirT1), a nicotinamide adenine dinucleotide(+)-dependent deacetylase, is a key enzyme in the cellular response to metabolic, inflammatory, and oxidative stresses; however, the role of endogenous SirT1 in the vasculature has not been fully elucidated. Our goal was to evaluate the role of vascular smooth muscle SirT1 in the physiological response of the aortic wall to angiotensin II, a potent hypertrophic, oxidant, and inflammatory stimulus. METHODS AND RESULTS: Mice lacking SirT1 in vascular smooth muscle (ie, smooth muscle SirT1 knockout) had drastically high mortality (70%) caused by aortic dissection after angiotensin II infusion (1 mg/kg per day) but not after an equipotent dose of norepinephrine, despite comparable blood pressure increases. Smooth muscle SirT1 knockout mice did not show any abnormal aortic morphology or blood pressure compared with wild-type littermates. Nonetheless, in response to angiotensin II, aortas from smooth muscle SirT1 knockout mice had severely disorganized elastic lamellae with frequent elastin breaks, increased oxidant production, and aortic stiffness compared with angiotensin II-treated wild-type mice. Matrix metalloproteinase expression and activity were increased in the aortas of angiotensin II-treated smooth muscle SirT1 knockout mice and were prevented in mice overexpressing SirT1 in vascular smooth muscle or with use of the oxidant scavenger tempol. CONCLUSIONS: Endogenous SirT1 in aortic smooth muscle is required to maintain the structural integrity of the aortic wall in response to oxidant and inflammatory stimuli, at least in part, by suppressing oxidant-induced matrix metalloproteinase activity. SirT1 activators could potentially be a novel therapeutic approach to prevent aortic dissection and rupture in patients at risk, such as those with hypertension or genetic disorders, such as Marfan's syndrome.R01 HL098028 - NHLBI NIH HHS; HL098028 - NHLBI NIH HHS; HL105287 - NHLBI NIH HHS; T32 HL07224 - NHLBI NIH HH

    The Role of Vascular Smooth Muscle Cells in Arterial Remodeling:Focus on Calcification-Related Processes

    Get PDF
    Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be

    Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation

    Full text link
    The endothelium holds a pivotal role in cardiovascular health and disease. Assessment of its function was until recently limited to experimental designs due to its location. The advent of novel techniques has facilitated testing on a more detailed basis, with focus on distinct pathways. This review presents available in-vivo and ex-vivo methods for evaluating endothelial function with special focus on more recent ones. The diagnostic modalities covered include assessment of epicardial and microvascular coronary endothelial function, local vasodilation by venous occlusion plethysmography and flow-mediated dilatation, arterial pulse wave analysis and pulse amplitude tonometry, microvascular blood flow by laser Doppler flowmetry, biochemical markers and bioassays, measurement of endothelial-derived microparticles and progenitor cells, and glycocalyx measurements. Insights and practical information on the theoretical basis, methodological aspects, and clinical application in various disease states are discussed. The ability of these methods to detect endothelial dysfunction before overt cardiovascular disease manifests make them attractive clinical tools for prevention and rehabilitation

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≄ 50 ÎŒ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
    • 

    corecore