100,417 research outputs found
Large Scale In Silico Screening on Grid Infrastructures
Large-scale grid infrastructures for in silico drug discovery open
opportunities of particular interest to neglected and emerging diseases. In
2005 and 2006, we have been able to deploy large scale in silico docking within
the framework of the WISDOM initiative against Malaria and Avian Flu requiring
about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These
achievements demonstrated the relevance of large-scale grid infrastructures for
the virtual screening by molecular docking. This also allowed evaluating the
performances of the grid infrastructures and to identify specific issues raised
by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science
Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in
the proceeding
In Silico Screening and Designing Synthesis of Cinchona Alkaloids Derivatives as Potential Anticancer
P-glycoprotein (P-gp) resistance in cancer cells decreases intracellular accumulation of various anticancer drugs. This multidrug resistance (MDR) protein can be modulated by a number of non-cytotoxic drugs. We have screened 30 chincona alkaloids derivatives as a potent P-gp inhibitor agent in silico. Hereby, we report the highest potential inhibitions of P-gp is Cinchonidine isobutanoate through molecular docking approach. with affinity energy -8.6 kcal/mol and inhibition constant, Ki is 4.89 x 10-7 M. Cinchonidine isobutanoate is also known has molecular weight below 500, Log P value 3.5, which is indicated violation free of Lipinski`s rule of five. Thus, Cinchonidine isobutanoate is the most potent compound as anticancer compare to other Cinchona alkaloids. Ultimately, we design Cinchonidine isobutanoate for further lead synthesis by using DBSA, act as a combined Brønsted acid-surfactant-catalyst (BASC) to obtain high concentration of organic product by forming micellar aggregates which is very powerful catalytic application in water environment
In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma.
The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease
Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification.
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines
Genetic programming in data mining for drug discovery
Genetic programming (GP) is used to extract from rat oral bioavailability
(OB) measurements simple, interpretable and predictive QSAR models
which both generalise to rats and to marketed drugs in humans. Receiver
Operating Characteristics (ROC) curves for the binary classier produced
by machine learning show no statistical dierence between rats (albeit
without known clearance dierences) and man. Thus evolutionary computing
oers the prospect of in silico ADME screening, e.g. for \virtual"
chemicals, for pharmaceutical drug discovery
Chapparvoviruses occur in at least three vertebrate classes and have a broad biogeographic distribution
Chapparvoviruses are a highly divergent group of parvoviruses (family Parvoviridae) that have recently been identified via metagenomic sampling of animal faeces. Here we report the sequences of six novel chapparvoviruses identified through both metagenomic sampling of bat tissues and in silico screening of published vertebrate genome assemblies. The novel chapparvoviruses share several distinctive genomic features, and group together as a robustly supported monophyletic clade in phylogenetic trees. Our data indicate that chapparvoviruses have a broad host range in vertebrates, and a global distribution
Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?
The organization and mining of malaria genomic and post-genomic data is
highly motivated by the necessity to predict and characterize new biological
targets and new drugs. Biological targets are sought in a biological space
designed from the genomic data from Plasmodium falciparum, but using also the
millions of genomic data from other species. Drug candidates are sought in a
chemical space containing the millions of small molecules stored in public and
private chemolibraries. Data management should therefore be as reliable and
versatile as possible. In this context, we examined five aspects of the
organization and mining of malaria genomic and post-genomic data: 1) the
comparison of protein sequences including compositionally atypical malaria
sequences, 2) the high throughput reconstruction of molecular phylogenies, 3)
the representation of biological processes particularly metabolic pathways, 4)
the versatile methods to integrate genomic data, biological representations and
functional profiling obtained from X-omic experiments after drug treatments and
5) the determination and prediction of protein structures and their molecular
docking with drug candidate structures. Progresses toward a grid-enabled
chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa
Grid Added Value to Address Malaria
Through this paper, we call for a distributed, internet-based collaboration
to address one of the worst plagues of our present world, malaria. The spirit
is a non-proprietary peer-production of information-embedding goods. And we
propose to use the grid technology to enable such a world wide "open source"
like collaboration. The first step towards this vision has been achieved during
the summer on the EGEE grid infrastructure where 46 million ligands were docked
for a total amount of 80 CPU years in 6 weeks in the quest for new drugs.Comment: 7 pages, 1 figure, 6th IEEE International Symposium on Cluster
Computing and the Grid, Singapore, 16-19 may 2006, to appear in the
proceeding
- …
