2 research outputs found

    In-silico Risk Analysis of Personalized Artificial Pancreas Controllers via Rare-event Simulation

    Full text link
    Modern treatments for Type 1 diabetes (T1D) use devices known as artificial pancreata (APs), which combine an insulin pump with a continuous glucose monitor (CGM) operating in a closed-loop manner to control blood glucose levels. In practice, poor performance of APs (frequent hyper- or hypoglycemic events) is common enough at a population level that many T1D patients modify the algorithms on existing AP systems with unregulated open-source software. Anecdotally, the patients in this group have shown superior outcomes compared with standard of care, yet we do not understand how safe any AP system is since adverse outcomes are rare. In this paper, we construct generative models of individual patients' physiological characteristics and eating behaviors. We then couple these models with a T1D simulator approved for pre-clinical trials by the FDA. Given the ability to simulate patient outcomes in-silico, we utilize techniques from rare-event simulation theory in order to efficiently quantify the performance of a device with respect to a particular patient. We show a 72,000×\times speedup in simulation speed over real-time and up to 2-10 times increase in the frequency which we are able to sample adverse conditions relative to standard Monte Carlo sampling. In practice our toolchain enables estimates of the likelihood of hypoglycemic events with approximately an order of magnitude fewer simulations.Comment: Machine Learning for Health (ML4H) Workshop at NeurIPS 2018 arXiv:1811.0721

    Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems

    Full text link
    Learning-based methodologies increasingly find applications in safety-critical domains like autonomous driving and medical robotics. Due to the rare nature of dangerous events, real-world testing is prohibitively expensive and unscalable. In this work, we employ a probabilistic approach to safety evaluation in simulation, where we are concerned with computing the probability of dangerous events. We develop a novel rare-event simulation method that combines exploration, exploitation, and optimization techniques to find failure modes and estimate their rate of occurrence. We provide rigorous guarantees for the performance of our method in terms of both statistical and computational efficiency. Finally, we demonstrate the efficacy of our approach on a variety of scenarios, illustrating its usefulness as a tool for rapid sensitivity analysis and model comparison that are essential to developing and testing safety-critical autonomous systems.Comment: NeurIPS 202
    corecore