40 research outputs found

    In the beginning was game semantics

    Full text link
    This article presents an overview of computability logic -- the game-semantically constructed logic of interactive computational tasks and resources. There is only one non-overview, technical section in it, devoted to a proof of the soundness of affine logic with respect to the semantics of computability logic. A comprehensive online source on the subject can be found at http://www.cis.upenn.edu/~giorgi/cl.htmlComment: To appear in: "Games: Unifying Logic, Language and Philosophy". O. Majer, A.-V. Pietarinen and T. Tulenheimo, eds. Springer Verlag, Berli

    Quantifying Shannon's Work Function for Cryptanalytic Attacks

    Full text link
    Attacks on cryptographic systems are limited by the available computational resources. A theoretical understanding of these resource limitations is needed to evaluate the security of cryptographic primitives and procedures. This study uses an Attacker versus Environment game formalism based on computability logic to quantify Shannon's work function and evaluate resource use in cryptanalysis. A simple cost function is defined which allows to quantify a wide range of theoretical and real computational resources. With this approach the use of custom hardware, e.g., FPGA boards, in cryptanalysis can be analyzed. Applied to real cryptanalytic problems, it raises, for instance, the expectation that the computer time needed to break some simple 90 bit strong cryptographic primitives might theoretically be less than two years.Comment: 19 page

    The Computational Complexity of Propositional Cirquent Calculus

    Full text link
    Introduced in 2006 by Japaridze, cirquent calculus is a refinement of sequent calculus. The advent of cirquent calculus arose from the need for a deductive system with a more explicit ability to reason about resources. Unlike the more traditional proof-theoretic approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus is based on circuit-style structures called cirquents, in which different "peer" (sibling, cousin, etc.) substructures may share components. It is this resource sharing mechanism to which cirquent calculus owes its novelty (and its virtues). From its inception, cirquent calculus has been paired with an abstract resource semantics. This semantics allows for reasoning about the interaction between a resource provider and a resource user, where resources are understood in the their most general and intuitive sense. Interpreting resources in a more restricted computational sense has made cirquent calculus instrumental in axiomatizing various fundamental fragments of Computability Logic, a formal theory of (interactive) computability. The so-called "classical" rules of cirquent calculus, in the absence of the particularly troublesome contraction rule, produce a sound and complete system CL5 for Computability Logic. In this paper, we investigate the computational complexity of CL5, showing it is Σ2p\Sigma_2^p-complete. We also show that CL5 without the duplication rule has polynomial size proofs and is NP-complete

    Removing Qualified Names in Modular Languages

    Full text link
    Although the notion of qualified names is popular in module systems, it causes severe complications. In this paper, we propose an alternative to qualified names. The key idea is to import the declarations in other modules to the current module before they are used. In this way, all the declarations can be accessed locally. However, this approach is not efficient in memory usage. Our contribution is the {\it module weakening} scheme which allows us to import the minimal parts. As an example of this approach, we propose a module system for functional languages
    corecore