89,989 research outputs found
Continuum Modeling and Simulation in Bone Tissue Engineering
Bone tissue engineering is currently a mature methodology from a research perspective.
Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved
in a number of papers to be an excellent assessment tool in the stages of design and proof of concept
through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions
in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico
simulations in BTE are classified into: (i) Mechanics modeling and sca old design, (ii) transport and
flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the
numerical implementation and simulation of continuum theories applied to di erent processes in
BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main
conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico
simulation o ers in BTE, and second, the need for interdisciplinary collaboration to further validate
numerical models developed in BTE.Ministerio de Economía y Competitividad del Gobierno España DPI2017-82501-
Agent-based computational modeling of wounded epithelial cell monolayers
Computational modeling of biological systems, or ‘in silico biology’ is an emerging tool for understanding structure and order in biological tissues. Computational models of the behavior of epithelial cells in monolayer cell culture have been developed and used to predict the healing characteristics of scratch wounds made to urothelial cell cultures maintained in low and physiological [Ca2+] environments. Both computational models and in vitro experiments demonstrated that in low exogenous [Ca2+], the closure of 500mm scratch wounds was achieved primarily by cell migration into the denuded area. The wound healing rate in low (0.09mM) [Ca2+] was approximately twice as rapid as in physiological (2mM) [Ca2+]. Computational modeling predicted that in cell cultures that are actively proliferating, no increase in the fraction of cells in S-phase would be expected, and this conclusion was supported experimentally in vitro by BrdU incorporation assay. We have demonstrated that a simple rule-based model of cell behavior, incorporating rules relating to contact inhibition of proliferation and migration, is sufficient to qualitatively predict the calcium-dependent pattern of wound closure observed in vitro. Differences between the in vitro and in silico models suggest a role for wound-induced signaling events in urothelial cell cultures
In silico modeling of oxygen-enhanced MRI of specific ventilation.
Specific ventilation imaging (SVI) proposes that using oxygen-enhanced 1H MRI to capture signal change as subjects alternatively breathe room air and 100% O2 provides an estimate of specific ventilation distribution in the lung. How well this technique measures SV and the effect of currently adopted approaches of the technique on resulting SV measurement is open for further exploration. We investigated (1) How well does imaging a single sagittal lung slice represent whole lung SV? (2) What is the influence of pulmonary venous blood on the measured MRI signal and resultant SVI measure? and (3) How does inclusion of misaligned images affect SVI measurement? In this study, we utilized two patient-based in silico models of ventilation, perfusion, and gas exchange to address these questions for normal healthy lungs. Simulation results from the two healthy young subjects show that imaging a single slice is generally representative of whole lung SV distribution, with a calculated SV gradient within 90% of that calculated for whole lung distributions. Contribution of O2 from the venous circulation results in overestimation of SV at a regional level where major pulmonary veins cross the imaging plane, resulting in a 10% increase in SV gradient for the imaging slice. A worst-case scenario simulation of image misalignment increased the SV gradient by 11.4% for the imaged slice
The in silico macrophage: toward a better understanding of inflammatory disease
Macrophages function as sentinel, cell-regulatory hubs capable of initiating,
perpetuating and contributing to the resolution of an inflammatory response,
following their activation from a resting state. Highly complex and varied gene
expression programs within the macrophage enable such functional diversity. To
investigate how programs of gene expression relate to the phenotypic attributes
of the macrophage, the development of in silico modeling methods is needed.
Such models need to cover multiple scales, from molecular pathways in
cell-autonomous immunity and intercellular communication pathways in tissue
inflammation to whole organism response pathways in systemic disease. Here, we
highlight the potential of in silico macrophage modeling as an amenable and
important yet under-exploited tool in aiding in our understanding of the immune
inflammatory response. We also discuss how in silico macrophage modeling can
help in future therapeutic strategies for modulating both the acute protective
effects of inflammation (such as host defense and tissue repair) and the
harmful chronic effects (such as autoimmune diseases).Comment: 7 pages plus 1 figur
Recommended from our members
Optimizing human pulmonary perfusion measurement using an in silico model of arterial spin labeling magnetic resonance imaging.
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is an imaging methodology that uses blood as an endogenous contrast agent to quantify flow. One limitation of this method of capillary blood quantification when applied in the lung is the contribution of signals from non-capillary blood. Intensity thresholding is one approach that has been proposed for minimizing the non-capillary blood signal. This method has been tested in previous in silico modeling studies; however, it has only been tested under a restricted set of physiological conditions (supine posture and a cardiac output of 5 L/min). This study presents an in silico approach that extends previous intensity thresholding analysis to estimate the optimal "per-slice" intensity threshold value using the individual components of the simulated ASL signal (signal arising independently from capillary blood as well as pulmonary arterial and pulmonary venous blood). The aim of this study was to assess whether the threshold value should vary with slice location, posture, or cardiac output. We applied an in silico modeling approach to predict the blood flow distribution and the corresponding ASL quantification of pulmonary perfusion in multiple sagittal imaging slices. There was a significant increase in ASL signal and heterogeneity (COV = 0.90 to COV = 1.65) of ASL signals when slice location changed from lateral to medial. Heterogeneity of the ASL signal within a slice was significantly lower (P = 0.03) in prone (COV = 1.08) compared to in the supine posture (COV = 1.17). Increasing stroke volume resulted in an increase in ASL signal and conversely an increase in heart rate resulted in a decrease in ASL signal. However, when cardiac output was increased via an increase in both stroke volume and heart rate, ASL signal remained relatively constant. Despite these differences, we conclude that a threshold value of 35% provides optimal removal of large vessel signal independent of slice location, posture, and cardiac output
In Silico Approaches and the Role of Ontologies in Aging Research
The 2013 Rostock Symposium on Systems Biology and Bioinformatics in Aging Research was again dedicated to dissecting the aging process using in silico means. A particular focus was on ontologies, as these are a key technology to systematically integrate heterogeneous information about the aging process. Related topics were databases and data integration. Other talks tackled modeling issues and applications, the latter including talks focussed on marker development and cellular stress as well as on diseases, in particular on diseases of kidney and skin
- …
