19 research outputs found
Atom, atom-type, and total linear indices of the "molecular pseudograph's atom adjacency matrix": Application to QSPR/QSAR studies of organic compounds
In this paper we describe the application in QSPR/QSAR studies of a new group of molecular descriptors: atom, atom-type and total linear indices of the molecular pseudograph's atom adjacency matrix. These novel molecular descriptors were used for the prediction of boiling point and partition coefficient (log P), specific rate constant (log k), and antibacterial activity of 28 alkyl-alcohols and 34 derivatives of 2-furylethylenes, respectively. For this purpose two quantitative models were obtained to describe the alkyl-alcohols' boiling points. The first one includes only two total linear indices and showed a good behavior from a statistical point of view (R2 = 0.984, s = 3.78, F = 748.57, q2 = 0.981, and scv = 3.91). The second one includes four variables [3 global and 1 local (heteroatom) linear indices] and it showed an improvement in the description of physical property (R 2 = 0.9934, s = 2.48, F = 871.96, q2 = 0.990, and s cv = 2.79). Later, linear multiple regression analysis was also used to describe log P and log k of the 2-furyl-ethylenes derivatives. These models were statistically significant [(R2 = 0.984, s = 0.143, and F = 113.38) and (R2 = 0.973, s = 0.26 and F = 161.22), respectively] and showed very good stability to data variation in leave-one-out (LOO) cross-validation experiment [(q2 = 0.93.8 and scv = 0.178) and (q2 = 0.948 and scv = 0.33), respectively]. Finally, a linear discriminant model for classifying antibacterial activity of these compounds was also achieved with the use of the atom and atom-type linear indices. The global percent of good classification in training and external test set obtained was of 94.12% and 100.0%, respectively. The comparison with other approaches (connectivity indices, total and local spectral moments, quantum chemical descriptors, topographic indices and Estate/biomolecular encounter parameters) reveals a good behavior of our method. The approach described in this paper appears to be a very promising structural invariant, useful for QSPR/QSAR studies and computer-aided "rational" drug design.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA
Computational discovery of novel anthelmintic natural compounds from Agave Brittoniana trel. Spp. Brachypus
Helminth infections are a medical problem in the world nowadays. This report used bond-based 2D quadratic indices, a bond-level QuBiLs-MAS molecular descriptor family, and Linear Discriminant Analysis (LDA) to obtain a quantitative linear model that discriminates between anthelmintic and non-anthelmintic drug-like organic-compounds. The model obtained correctly classified 87.46% and 81.82% of the training and external data sets, respectively. The developed model was used in a virtual screening to predict the biological activity of all chemicals (19) previously obtained and chemically characterized by some authors of this report from Agave brittoniana Trel. spp. Brachypus. The model identified several metabolites (12) as possible anthelmintics, and a group of 5 novel natural products was tested in an in vitro assay against Fasciola hepatica (100% effectivity at 500 µg/mL). Finally, the two best hits were evaluated in vivo in bald/c mice and the same helminth parasite using a 25 mg/kg dose. Compound 8 (Karatavinoside A) showed an efficacy of 92.2% in vivo. It is important to remark that this natural compound exhibits similar-to-superior activity as triclabendazole, the best human fasciolicide available in the market against Fasciola hepatica, resulting in a novel lead scaffold with anti-helminthic activity.15 página
Bio-AIMS collection of chemoinformatics web tools based on molecular graph information and artificial intelligence models
[Abstract] The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.Red Gallega de Investigación y Desarrollo de Medicamentos; R2014/025Instituto de Salud Carlos III; PI13/0028
MIANN models in medicinal, physical and organic chemistry
[Abstract] Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.Ministerio de Ciencia e Innovación; CTQ2009-07733Universidad del Pais Vasco; UFI11/22Universidad del Pais Vasco; GIU 094
In silico approach to screen compounds active against parasitic nematodes of major socio-economic importance
Infections due to parasitic nematodes are common causes of morbidity and fatality around the world especially in developing nations. At present however, there are only three major classes of drugs for treating human nematode infections. Additionally the scientific knowledge on the mechanism of action and the reason for the resistance to these drugs is poorly understood. Commercial incentives to design drugs that are endemic to developing countries are limited therefore, virtual screening in academic settings can play a vital role is discovering novel drugs useful against neglected diseases. In this study we propose to build robust machine learning model to classify and screen compounds active against parasitic nematodes.A set of compounds active against parasitic nematodes were collated from various literature sources including PubChem while the inactive set was derived from DrugBank database. The support vector machine (SVM) algorithm was used for model development, and stratified ten-fold cross validation was used to evaluate the performance of each classifier. The best results were obtained using the radial basis function kernel. The SVM method achieved an accuracy of 81.79% on an independent test set. Using the model developed above, we were able to indentify novel compounds with potential anthelmintic activity.In this study, we successfully present the SVM approach for predicting compounds active against parasitic nematodes which suggests the effectiveness of computational approaches for antiparasitic drug discovery. Although, the accuracy obtained is lower than the previously reported in a similar study but we believe that our model is more robust because we intentionally employed stringent criteria to select inactive dataset thus making it difficult for the model to classify compounds. The method presents an alternative approach to the existing traditional methods and may be useful for predicting hitherto novel anthelmintic compounds.12 page(s
Graph theory-based sequence descriptors as remote homology predictors
Indexación: Scopus.Alignment-free (AF) methodologies have increased in popularity in the last decades as alternative tools to alignment-based (AB) algorithms for performing comparative sequence analyses. They have been especially useful to detect remote homologs within the twilight zone of highly diverse gene/protein families and superfamilies. The most popular alignment-free methodologies, as well as their applications to classification problems, have been described in previous reviews. Despite a new set of graph theory-derived sequence/structural descriptors that have been gaining relevance in the detection of remote homology, they have been omitted as AF predictors when the topic is addressed. Here, we first go over the most popular AF approaches used for detecting homology signals within the twilight zone and then bring out the state-of-the-art tools encoding graph theory-derived sequence/structure descriptors and their success for identifying remote homologs. We also highlight the tendency of integrating AF features/measures with the AB ones, either into the same prediction model or by assembling the predictions from different algorithms using voting/weighting strategies, for improving the detection of remote signals. Lastly, we briefly discuss the efforts made to scale up AB and AF features/measures for the comparison of multiple genomes and proteomes. Alongside the achieved experiences in remote homology detection by both the most popular AF tools and other less known ones, we provide our own using the graphical–numerical methodologies, MARCH-INSIDE, TI2BioP, and ProtDCal. We also present a new Python-based tool (SeqDivA) with a friendly graphical user interface (GUI) for delimiting the twilight zone by using several similar criteria.https://www.mdpi.com/2218-273X/10/1/2
Modelos bioinformáticos y estudio de receptores de proteínas mediante el uso de redes complejas para el desarrollo y diseño de fármacos eficaces en patologías del sistema nervioso central
La búsqueda y desarrollo de fármacos eficaces para el tratamiento de enfermedades
neurodegenerativas ha generado grandes expectativas, debido a la relevancia que tienen
sobre la economía de los sistemas sanitarios y la tremenda carga y desgaste que sufren familia
y cuidadores. Por ello, la industria farmacéutica se ha volcado sobre estas patologías en las
últimas tres décadas, pero las dificultades de realizar ensayos sobre el SN provoca que los
gastos y tiempos de investigación se disparen, limitando de forma considerable la rentabilidad
de los procesos tradicionales en el desarrollo de nuevos medicamentos. Es en este apartado
donde realiza sus aportaciones el diseño de fármacos, dedicando una parte del mismo al
desarrollo de modelos matemáticos que permitan predecir propiedades de interés para una
gran variedad de sistemas químicos incluyendo moléculas de bajo peso molecular, polímeros,
biopolímeros, sistemas heterogéneos, formulaciones farmacéuticas, conglomerados de
moléculas e iones, materiales, nano-estructuras y otros.
En dicho sentido, los estudios QSAR (Quantitative Structure-Activity-Relationships) son
usados cada vez mas como herramientas para el descubrimiento molecular. Estos modelos
QSAR pueden ser diseñados para que predigan la probabilidad de que un fármaco sea efectivo
contra una enfermedad degenerativa determinada ya sea la enfermedad de Parkinson,
Alzheimer o cualquier otra, actuando sobre una diana molecular específica.
En esta memoria presentamos de manera conjunta la revisión de modelos previos y
trabajos específicos novedosos, en los que se han introducido nuevos índices numéricos
utilizados para describir tanto la estructura molecular de fármacos como la estructura
macromolecular de sus dianas o receptores (proteínas y/o ADN/ARN). Con estos ITs hemos
sido capaces de desarrollar nuevos modelos multiQSAR de gran interés por su doble función en
la predicción de fármacos y sus dianas moleculares. Estos trabajos permitirán la introducción
de nuevos conceptos teóricos y la evolución hacia modelos con posibles aplicaciones en la
búsqueda de nuevos fármacos neuroprotectores útiles en el tratamiento de las enfermedades
de Parkinson y Alzheimer y/o nuevas dianas moleculares para estos fármacos. Este tipo de
investigación abarca un área general-básica en la que interactúan la Bioinformática y la
Quimioinformática
Construcción QSAR de redes complejas de compuestos de interés en Química Farmacéutica, Microbiología y Parasitología
El diseño para la búsqueda y desarrollo de fármacos eficaces para el tratamiento de estas enfermedades, que supriman la eliminación o la degeneración celular respectivamente, es una de las líneas de investigación más importantes dentro de la química farmacéutica. En esto entra el diseño de fármacos; el diseño de fármacos está dedicado al desarrollo de modelos matemáticos para predecir propiedades de interés para una gran variedad de sistemas químicos incluyendo moléculas de bajo peso molecular, polímeros, biopolímeros, sistemas heterogéneos, formulaciones farmacéuticas, conglomerados de moléculas e iones, materiales, nano-estructuras y otros. Este tipo de predicciones no pretenden sustituir las técnicas experimentales sino complementar las mismas ayudando a obtener nuevas moléculas activas con mayor probabilidad de éxito, con la ventaja que ello supone en términos de ahorro de tiempo, recursos materiales, y muy importante: el refinamiento y reducción en el uso de animales de laboratorio.
Esta metodología se basa en el uso de cálculos por ordenador y en las nuevas tecnologías de la informática. Las cuales pueden ser usadas:
Para moléculas pequeñas:
a) Estudios de relación cuantitativa estructura molecular-actividad farmacológica (QSAR) y de estructura molecular propiedades toxicológicas y eco-toxicológicas incluyendo mutagenicidad e carcinogénesis (QSTR).
b) Predicción de propiedades químicas y fisicoquímicas de moléculas. Estudios de relación estructura molecular y propiedades de absorción, distribución, metabolismo y eliminación (ADME).
c) Predicción de mecanismos de acción biológica de moléculas y evaluación in sílico de alta eficacia para grandes bases de datos (virtual HTS).
Para macromoléculas:
a) Estudios de interacción fármaco-receptor (neuronas).
b) Bioinformática aplicada a estudios de relación secuencia-función y propiedades estructurales de ácidos nucleicos y proteínas.
c) Búsqueda de nuevas dianas terapéuticas y “sitio activo” a partir de datos de Genómica, Proteómica.
d) Búsqueda de biomarcadores para diagnóstico de enfermedades o como indicadores de contaminaciones.
e) Predicción de propiedades fisicoquímicas de polímeros sintéticos, biopolímeros, materiales y nano-estructuras.
f) Predicción, diseño, y optimización de enzimas mutadas para procesos biotecnológicos
Prediction of Multi-Target Networks of Neuroprotective Compounds with Entropy Indices and Synthesis, Assay, and Theoretical Study of New Asymmetric 1,2-Rasagiline Carbamates.
In a multi-target complex network, the links (Lij) represent the interactions between the drug (di) and the target (tj), characterized by different experimental measures (Ki, Km, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (cj). In this work, we handle Shannon entropy measures for developing a model encompassing a multi target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database
Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1,2-rasagiline carbamates
In a multi-target complex network, the links (Lij) represent the interactions
between the drug (di) and the target (tj), characterized by different experimental measures
(Ki, Km, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions
(cj). In this work, we handle Shannon entropy measures for developing a model
encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in
the CHEMBL database. The model predicts correctly >8300 experimental outcomes with
Accuracy, Specificity, and Sensitivity above 80%–90% on training and external validation
series. Indeed, the model can calculate different outcomes for >30 experimental measures
in >400 different experimental protocolsin relation with >150 molecular and cellular
OPEN ACCESS
Int. J. Mol. Sci. 2014, 15 17036
targets on 11 different organisms (including human). Hereafter, we reported by the first
time the synthesis, characterization, and experimental assays of a new series of chiral
1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests
included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and
(3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving
Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in
a high number of pharmacological tests not carried out experimentallyThe authors thank the Xunta de Galicia for financial support of this work under
project 07CSA008203PRS
