444 research outputs found

    Analysis of GFDM as a robust 5G communication technique in noisy environment

    Get PDF
    One of the challenges of modulation techniques used in Fifth-Generation (5G) is their robustness in noisy environment. Conventional Orthogonal Frequency Division Multiplexing (OFDM) cannot be considered as a 5G waveform in its original form because of its certain limitations, such as performance degradation by impulsive noise (IN) and high peak to average power ratio (PAPR). Numerous modulation schemes proposed for 5G communications are able to overcome these drawbacks. Generalised Frequency Division Multiplexing (GFDM) is one of them. This paper analyses the performance of GFDM in presence of Additive White Gaussian Noise (AWGN), IN and Narrow Band Interference (NBI). It is found that GFDM is able to perform better than OFDM and Vector Orthogonal Frequency Division Multiplexing (VOFDM) in presence of noises, which can potentially be present in 5G applications. Simulation results show that GFDM achieve lower PAPR and Symbol Error Rate (SER) and an average of 10.73 dB and 4.73 dB gain in Signal to Noise Ratio (SNR) in presence of IN and combined IN and NBI respectively, as compared to OFDM and VOFDM

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC
    • …
    corecore