2 research outputs found

    Improving Transparency in Passive Teleoperation by Combining Cutaneous and Kinesthetic Force Feedback

    No full text
    A novel idea for improving transparency of teleoperation systems with force feedback is presented. This approach is based on the idea of sensory subtraction presented in [12], and consists of providing the operator with independently controlled kinesthetic and cutaneous feedback to improve the realism of haptic rendering of the remote environment (i.e., transparency), while preserving stability. More specifically, cutaneous force feedback is employed to recover transparency when a lack of kinesthetic feedback has to be enforced to keep the teleoperation loop stable. The viability of this approach is demonstrated with two experiments of teleoperated needle insertion. Results showed improved performance with respect to common control techniques not employing the proposed cutaneous compensation

    Improving Transparency in Passive Teleoperation by Combining Cutaneous and Kinesthetic Force Feedback

    No full text
    Abstract — A novel idea for improving transparency of teleoperation systems with force feedback is presented. This approach is based on the idea of sensory subtraction presented in [12], and consists of providing the operator with independently controlled kinesthetic and cutaneous feedback to improve the realism of haptic rendering of the remote environment (i.e., transparency), while preserving stability. More specifically, cutaneous force feedback is employed to recover transparency when a lack of kinesthetic feedback has to be enforced to keep the teleoperation loop stable. The viability of this approach is demonstrated with two experiments of teleoperated needle insertion. Results showed improved performance with respect to common control techniques not employing the proposed cutaneous compensation. I
    corecore