2 research outputs found

    Improving the reference network in wide-area Persistent Scatterer Interferometry for non-urban areas

    Get PDF
    Advanced Interferometric SAR (InSAR) technique, namely, Persistent Scatterer Interferometry (PSI), allows long term deformation time series analysis with millimeter accuracy. Reference network arcs construction, arcs estimation and integration for PSs are an important step in PSI. In rural regions, low density of PSs leads to separate clusters during reference network construction. Also, in case of wide-area PSI using ERS-1/2 or Sentinel-1 data, the computational load can be very high. Due to this, the reference network processing is usually divided into overlapping blocks and merged later. This can however lead to spatial error propagation. This paper presents algorithms for improving the reference network in wide-area PSI, with a focus on non-urban areas

    Review of works combining GNSS and insar in Europe

    Get PDF
    The Global Navigation Satellite System (GNSS) and Synthetic Aperture Radar Interferometry (InSAR) can be combined to achieve different goals, owing to their main principles. Both enable the collection of information about ground deformation due to the differences of two consequent acquisitions. Their variable applications, even if strictly related to ground deformation and water vapor determination, have encouraged the scientific community to combine GNSS and InSAR data and their derivable products. In this work, more than 190 scientific contributions were collected spanning the whole European continent. The spatial and temporal distribution of such studies, as well as the distinction in different fields of application, were analyzed. Research in Italy, as the most represented nation, with 47 scientific contributions, has been dedicated to the spatial and temporal distribution of its studied phenomena. The state-of-the-art of the various applications of these two combined techniques can improve the knowledge of the scientific community and help in the further development of new approaches or additional applications in different fields. The demonstrated usefulness and versability of the combination of GNSS and InSAR remote sensing techniques for different purposes, as well as the availability of free data, EUREF and GMS (Ground Motion Service), and the possibility of overcoming some limitations of these techniques through their combination suggest an increasingly widespread approach
    corecore