4,516 research outputs found

    Performance of active multicast congestion control

    Get PDF
    This paper aims to provide insight into the behavior of congestion control mechanisms for reliable multicast protocols. A multicast congestion control based on active networks has been proposed and simulated using ns-2 over a network topology obtained using the Tiers tool. The congestion control mechanism has been simulated under different network conditions and with different settings of its configuration parameters. The objective is to analyze its performance and the impact of the different configuration parameters on its behavior. The simulation results show that the performance of the protocol is good in terms of delay and bandwidth utilization. The compatibility of the protocol with TCP flows has not been demonstrated, but the simulations performed show that by altering the parameter settings, the proportion of total bandwidth taken up by the two types of flow, multicast and TCP, may be modified.Publicad

    TCP in the Internet of Things: from ostracism to prominence

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.TCP has traditionally been neglected as a transport-layer protocol for the Internet of Things (IoT). However, recent trends and industry needs are favoring TCP presence in IoT environments. In this article, we describe the main IoT scenarios where TCP will be used. We then analyze the historically claimed issues of TCP in the IoT context. We argue that, in contrast to generally accepted wisdom, most of those possible issues fall in one of the following categories: i) are also found in well-accepted IoT end-to-end reliability mechanisms, ii) can be solved, or iii) are not actual issues. Considering the future prominent role of TCP in the IoT, we provide recommendations for lightweight TCP implementation and suitable operation in such scenarios, based on our IETF standardization work on the topic.Postprint (author's final draft

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200

    QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding Tree Cohorts

    Full text link
    Large inter-datacenter transfers are crucial for cloud service efficiency and are increasingly used by organizations that have dedicated wide area networks between datacenters. A recent work uses multicast forwarding trees to reduce the bandwidth needs and improve completion times of point-to-multipoint transfers. Using a single forwarding tree per transfer, however, leads to poor performance because the slowest receiver dictates the completion time for all receivers. Using multiple forwarding trees per transfer alleviates this concern--the average receiver could finish early; however, if done naively, bandwidth usage would also increase and it is apriori unclear how best to partition receivers, how to construct the multiple trees and how to determine the rate and schedule of flows on these trees. This paper presents QuickCast, a first solution to these problems. Using simulations on real-world network topologies, we see that QuickCast can speed up the average receiver's completion time by as much as 10×10\times while only using 1.04×1.04\times more bandwidth; further, the completion time for all receivers also improves by as much as 1.6×1.6\times faster at high loads.Comment: [Extended Version] Accepted for presentation in IEEE INFOCOM 2018, Honolulu, H

    Modelling & Improving Flow Establishment in RSVP

    Get PDF
    RSVP has developed as a key component for the evolving Internet, and in particular for the Integrated Services Architecture. Therefore, RSVP performance is crucially important; yet this has been little studied up till now. In this paper, we target one of the most important aspects of RSVP: its ability to establish flows. We first identify the factors influencing the performance of the protocol by modelling the establishment mechanism. Then, we propose a Fast Establishment Mechanism (FEM) aimed at speeding up the set-up procedure in RSVP. We analyse FEM by means of simulation, and show that it offers improvements to the performance of RSVP over a range of likely circumstances

    Poor Man's Content Centric Networking (with TCP)

    Get PDF
    A number of different architectures have been proposed in support of data-oriented or information-centric networking. Besides a similar visions, they share the need for designing a new networking architecture. We present an incrementally deployable approach to content-centric networking based upon TCP. Content-aware senders cooperate with probabilistically operating routers for scalable content delivery (to unmodified clients), effectively supporting opportunistic caching for time-shifted access as well as de-facto synchronous multicast delivery. Our approach is application protocol-independent and provides support beyond HTTP caching or managed CDNs. We present our protocol design along with a Linux-based implementation and some initial feasibility checks
    corecore