7,132 research outputs found

    The Raincore API for clusters of networking elements

    Get PDF
    Clustering technology offers a way to increase overall reliability and performance of Internet information flow by strengthening one link in the chain without adding others. We have implemented this technology in a distributed computing architecture for network elements. The architecture, called Raincore, originated in the Reliable Array of Independent Nodes, or RAIN, research collaboration between the California Institute of Technology and the US National Aeronautics and Space Agency's Jet Propulsion Laboratory. The RAIN project focused on developing high-performance, fault-tolerant, portable clustering technology for spaceborne computing . The technology that emerged from this project became the basis for a spinoff company, Rainfinity, which has the exclusive intellectual property rights to the RAIN technology. The authors describe the Raincore conceptual architecture and distributed services, which are designed to make it easy for developers to port their applications to run on top of a cluster of networking elements. We include two applications: a Web server prototype that was part of the original RAIN research project and a commercial firewall cluster product from Rainfinity

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    Libra: An Economy driven Job Scheduling System for Clusters

    Full text link
    Clusters of computers have emerged as mainstream parallel and distributed platforms for high-performance, high-throughput and high-availability computing. To enable effective resource management on clusters, numerous cluster managements systems and schedulers have been designed. However, their focus has essentially been on maximizing CPU performance, but not on improving the value of utility delivered to the user and quality of services. This paper presents a new computational economy driven scheduling system called Libra, which has been designed to support allocation of resources based on the users? quality of service (QoS) requirements. It is intended to work as an add-on to the existing queuing and resource management system. The first version has been implemented as a plugin scheduler to the PBS (Portable Batch System) system. The scheduler offers market-based economy driven service for managing batch jobs on clusters by scheduling CPU time according to user utility as determined by their budget and deadline rather than system performance considerations. The Libra scheduler ensures that both these constraints are met within an O(n) run-time. The Libra scheduler has been simulated using the GridSim toolkit to carry out a detailed performance analysis. Results show that the deadline and budget based proportional resource allocation strategy improves the utility of the system and user satisfaction as compared to system-centric scheduling strategies.Comment: 13 page
    corecore