8,239 research outputs found

    Combining a hierarchical task network planner with a constraint satisfaction solver for assembly operations involving routing problems in a multi-robot context

    Get PDF
    This work addresses the combination of a symbolic hierarchical task network planner and a constraint satisfaction solver for the vehicle routing problem in a multi-robot context for structure assembly operations. Each planner has its own problem domain and search space, and the article describes how both planners interact in a loop sharing information in order to improve the cost of the solutions. The vehicle routing problem solver gives an initial assignment of parts to robots, making the distribution based on the distance among parts and robots, trying also to maximize the parallelism of the future assembly operations evaluating during the process the dependencies among the parts assigned to each robot. Then, the hierarchical task network planner computes a scheduling for the given assignment and estimates the cost in terms of time spent on the structure assembly. This cost value is then given back to the vehicle routing problem solver as feedback to compute a better assignment, closing the loop and repeating again the whole process. This interaction scheme has been tested with different constraint satisfaction solvers for the vehicle routing problem. The article presents simulation results in a scenario with a team of aerial robots assembling a structure, comparing the results obtained with different configurations of the vehicle routing problem solver and showing the suitability of using this approach.Unión Europea ARCAS FP7-ICT-287617Unión Europea H2020-ICT-644271Unión europea H2020-ICT-73166

    Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms

    Get PDF
    [EN] Recent advances in robotics and digital technologies in the automotive industry, allow the integration of vehicle systems with their virtual twins, thus facilitating their modelling and optimization. As a result, the systems design time and manufacturing costs are substantially reduced, while their performance, safety and fatigue life are expanded.This work presents a multiobjective optimization framework for developing an optimal design of a front double wishbone vehicle suspension system based on a four-bar mechanism. This is carried out by coupling several computer-aided design tools (CAD) and computer-aided engineering (CAE) software. The 3D CAD model of the lower control arm of the suspension system is made using SolidWorks (R), the Finite Element Analysis (FEA) of the suspension assembly is modelled using ANSYS (R) Workbench, while the multibody kinetic and dynamic of the designed suspension system is analysed using MSC ADAMS (R). They are embedded in a multidisciplinary optimization design framework (modeFrontier (R)) with the aim of determining the optimal hardpoint locations of a lower control arm by minimizing the chassis pitch accelerations to improve the passengers' comfort, reducing the volume and mass of the suspension system to increase the vehicle stability and manoeuvrability, while decreasing the maximum stresses to extend the system fatigue life and enhancing safety.The methodology has been successfully applied to several driving scenarios entailing different vehicle dy-namics manoeuvres with the aim to find the Pareto optimal front, and to analyse the suspension assembly performance together with the vehicle dynamic behaviour. Results show that the use of such approach may significantly improve the design of the suspension system. Furthermore, a comparison of different optimization strategies and algorithms is performed.Llopis-Albert, C.; Rubio Montoya, FJ.; Zeng, S. (2023). Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms. Advances in Engineering Software. 176(103375). https://doi.org/10.1016/j.advengsoft.2022.10337517610337

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    DEVELOPING NOVEL COMPUTER-AIDED DETECTION AND DIAGNOSIS SYSTEMS OF MEDICAL IMAGES

    Get PDF
    Reading medical images to detect and diagnose diseases is often difficult and has large inter-reader variability. To address this issue, developing computer-aided detection and diagnosis (CAD) schemes or systems of medical images has attracted broad research interest in the last several decades. Despite great effort and significant progress in previous studies, only limited CAD schemes have been used in clinical practice. Thus, developing new CAD schemes is still a hot research topic in medical imaging informatics field. In this dissertation, I investigate the feasibility of developing several new innovative CAD schemes for different application purposes. First, to predict breast tumor response to neoadjuvant chemotherapy and reduce unnecessary aggressive surgery, I developed two CAD schemes of breast magnetic resonance imaging (MRI) to generate quantitative image markers based on quantitative analysis of global kinetic features. Using the image marker computed from breast MRI acquired pre-chemotherapy, CAD scheme enables to predict radiographic complete response (CR) of breast tumors to neoadjuvant chemotherapy, while using the imaging marker based on the fusion of kinetic and texture features extracted from breast MRI performed after neoadjuvant chemotherapy, CAD scheme can better predict the pathologic complete response (pCR) of the patients. Second, to more accurately predict prognosis of stroke patients, quantifying brain hemorrhage and ventricular cerebrospinal fluid depicting on brain CT images can play an important role. For this purpose, I developed a new interactive CAD tool to segment hemorrhage regions and extract radiological imaging marker to quantitatively determine the severity of aneurysmal subarachnoid hemorrhage at presentation and correlate the estimation with various homeostatic/metabolic derangements and predict clinical outcome. Third, to improve the efficiency of primary antibody screening processes in new cancer drug development, I developed a CAD scheme to automatically identify the non-negative tissue slides, which indicate reactive antibodies in digital pathology images. Last, to improve operation efficiency and reliability of storing digital pathology image data, I developed a CAD scheme using optical character recognition algorithm to automatically extract metadata from tissue slide label images and reduce manual entry for slide tracking and archiving in the tissue pathology laboratories. In summary, in these studies, we developed and tested several innovative approaches to identify quantitative imaging markers with high discriminatory power. In all CAD schemes, the graphic user interface-based visual aid tools were also developed and implemented. Study results demonstrated feasibility of applying CAD technology to several new application fields, which has potential to assist radiologists, oncologists and pathologists improving accuracy and consistency in disease diagnosis and prognosis assessment of using medical image

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano Rodríguez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano Rodríguez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    Deep knowledge transfer for generalization across tasks and domains under data scarcity

    Get PDF
    Over the last decade, deep learning approaches have achieved tremendous performance in a wide variety of fields, e.g., computer vision and natural language understanding, and across several sectors such as healthcare, industrial manufacturing, and driverless mobility. Most deep learning successes were accomplished in learning scenarios fulfilling the two following requirements. First, large amounts of data are available for training the deep learning model and there are no access restrictions to the data. Second, the data used for training and testing is independent and identically distributed (i.i.d.). However, many real-world applications infringe at least one of the aforementioned requirements, which results in challenging learning problems. The present thesis comprises four contributions to address four such learning problems. In each contribution, we propose a novel method and empirically demonstrate its effectiveness for the corresponding problem setting. The first part addresses the underexplored intersection of the few-shot learning and the one-class classification problems. In this learning scenario, the model has to learn a new task using only a few examples from only the majority class, without overfitting to the few examples or to the majority class. This learning scenario is faced in real-world applications of anomaly detection where data is scarce. We propose an episode sampling technique to adapt meta-learning algorithms designed for class-balanced few-shot classification to the addressed few-shot one-class classification problem. This is done by optimizing for a model initialization tailored for the addressed scenario. In addition, we provide theoretical and empirical analyses to investigate the need for second-order derivatives to learn such parameter initializations. Our experiments on 8 image and time-series datasets, including a real-world dataset of industrial sensor readings, demonstrate the effectiveness of our method. The second part tackles the intersection of the continual learning and the anomaly detection problems, which we are the first to explore, to the best of our knowledge. In this learning scenario, the model is exposed to a stream of anomaly detection tasks, i.e., only examples from the normal class are available, that it has to learn sequentially. Such problem settings are encountered in anomaly detection applications where the data distribution continuously changes. We propose a meta-learning approach that learns parameter-specific initializations and learning rates suitable for continual anomaly detection. Our empirical evaluations show that a model trained with our algorithm is able to learn up 100 anomaly detection tasks sequentially with minimal catastrophic forgetting and overfitting to the majority class. In the third part, we address the domain generalization problem, in which a model trained on several source domains is expected to generalize well to data from a previously unseen target domain, without any modification or exposure to its data. This challenging learning scenario is present in applications involving domain shift, e.g., different clinical centers using different MRI scanners or data acquisition protocols. We assume that learning to extract a richer set of features improves the transfer to a wider set of unknown domains. Motivated by this, we propose an algorithm that identifies the already learned features and corrupts them, hence enforcing new feature discovery. We leverage methods from the explainable machine learning literature to identify the features, and apply the targeted corruption on multiple representation levels, including input data and high-level embeddings. Our extensive empirical evaluation shows that our approach outperforms 18 domain generalization algorithms on multiple benchmark datasets. The last part of the thesis addresses the intersection of domain generalization and data-free learning methods, which we are the first to explore, to the best of our knowledge. Hereby, we address the learning scenario where a model robust to domain shift is needed and only models trained on the same task but different domains are available instead of the original datasets. This learning scenario is relevant for any domain generalization application where the access to the data of the source domains is restricted, e.g., due to concerns about data privacy concerns or intellectual property infringement. We develop an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift, by generating synthetic cross-domain data. Our empirical evaluation demonstrates the effectiveness of our method which outperforms ensemble and data-free knowledge distillation baselines. Most importantly, the proposed approach substantially reduces the gap between the best data-free baseline and the upper-bound baseline that uses the original private data
    corecore