115,996 research outputs found

    Cue Phrase Classification Using Machine Learning

    Full text link
    Cue phrases may be used in a discourse sense to explicitly signal discourse structure, but also in a sentential sense to convey semantic rather than structural information. Correctly classifying cue phrases as discourse or sentential is critical in natural language processing systems that exploit discourse structure, e.g., for performing tasks such as anaphora resolution and plan recognition. This paper explores the use of machine learning for classifying cue phrases as discourse or sentential. Two machine learning programs (Cgrendel and C4.5) are used to induce classification models from sets of pre-classified cue phrases and their features in text and speech. Machine learning is shown to be an effective technique for not only automating the generation of classification models, but also for improving upon previous results. When compared to manually derived classification models already in the literature, the learned models often perform with higher accuracy and contain new linguistic insights into the data. In addition, the ability to automatically construct classification models makes it easier to comparatively analyze the utility of alternative feature representations of the data. Finally, the ease of retraining makes the learning approach more scalable and flexible than manual methods.Comment: 42 pages, uses jair.sty, theapa.bst, theapa.st

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201
    • …
    corecore