2 research outputs found

    LMPIT-inspired Tests for Detecting a Cyclostationary Signal in Noise with Spatio-Temporal Structure

    Get PDF
    In spectrum sensing for cognitive radio, the presence of a primary user can be detected by making use of the cyclostationarity property of digital communication signals. For the general scenario of a cyclostationary signal in temporally colored and spatially correlated noise, it has previously been shown that an asymptotic generalized likelihood ratio test (GLRT) and locally most powerful invariant test (LMPIT) exist. In this paper, we derive detectors for the presence of a cyclostationary signal in various scenarios with structured noise. In particular, we consider noise that is temporally white and/or spatially uncorrelated. Detectors that make use of this additional information about the noise process have enhanced performance. We have previously derived GLRTs for these specific scenarios; here, we examine the existence of LMPITs. We show that these exist only for detecting the presence of a cyclostationary signal in spatially uncorrelated noise. For white noise, an LMPIT does not exist. Instead, we propose tests that approximate the LMPIT, and they are shown to perform well in simulations. Finally, if the noise structure is not known in advance, we also present hypothesis tests using our framework

    Improving Robustness of Cyclostationary Detectors to Cyclic Frequency Mismatch Using Slepian Basis

    Get PDF
    Spectrum Sensing (SS) is one of the fundamental mechanisms required by a Cognitive Radio (CR). Among several SS techniques, cyclostationary feature detection is considered as an important technique due to its robustness against noise variance uncertainty and its capability to distinguish among different systems on the basis of their cyclostationary features. However, one of the main limitations of this detector in practical scenarios is its performance degradation in the presence of cyclic frequency mismatch, which mainly arises due to the lack of knowledge about the transmitter clock/oscillator errors at the detector. In this context, this paper proposes a novel solution to address the cyclic frequency mismatch problem utilizing the Slepian basis expansion instead of the widely used Fourier basis expansion. It is shown that the proposed approach captures the deviation in the cyclic frequency caused by the aforementioned imperfections and hence provides a significant improvement in the sensing performance in the presence of cyclic frequency mismatch
    corecore