593 research outputs found
A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead
Physical layer security which safeguards data confidentiality based on the
information-theoretic approaches has received significant research interest
recently. The key idea behind physical layer security is to utilize the
intrinsic randomness of the transmission channel to guarantee the security in
physical layer. The evolution towards 5G wireless communications poses new
challenges for physical layer security research. This paper provides a latest
survey of the physical layer security research on various promising 5G
technologies, including physical layer security coding, massive multiple-input
multiple-output, millimeter wave communications, heterogeneous networks,
non-orthogonal multiple access, full duplex technology, etc. Technical
challenges which remain unresolved at the time of writing are summarized and
the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy
This paper studies physical layer security in a wireless ad hoc network with
numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid
full-/half-duplex receiver deployment strategy is proposed to secure legitimate
transmissions, by letting a fraction of legitimate receivers work in the
full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon
their information receptions, and letting the other receivers work in the
half-duplex mode just receiving their desired signals. The objective of this
paper is to choose properly the fraction of FD receivers for achieving the
optimal network security performance. Both accurate expressions and tractable
approximations for the connection outage probability and the secrecy outage
probability of an arbitrary legitimate link are derived, based on which the
area secure link number, network-wide secrecy throughput and network-wide
secrecy energy efficiency are optimized respectively. Various insights into the
optimal fraction are further developed and its closed-form expressions are also
derived under perfect self-interference cancellation or in a dense network. It
is concluded that the fraction of FD receivers triggers a non-trivial trade-off
between reliability and secrecy, and the proposed strategy can significantly
enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE
Transactions on Wireless Communications, 201
Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey
This paper provides a comprehensive review of the domain of physical layer
security in multiuser wireless networks. The essential premise of
physical-layer security is to enable the exchange of confidential messages over
a wireless medium in the presence of unauthorized eavesdroppers without relying
on higher-layer encryption. This can be achieved primarily in two ways: without
the need for a secret key by intelligently designing transmit coding
strategies, or by exploiting the wireless communication medium to develop
secret keys over public channels. The survey begins with an overview of the
foundations dating back to the pioneering work of Shannon and Wyner on
information-theoretic security. We then describe the evolution of secure
transmission strategies from point-to-point channels to multiple-antenna
systems, followed by generalizations to multiuser broadcast, multiple-access,
interference, and relay networks. Secret-key generation and establishment
protocols based on physical layer mechanisms are subsequently covered.
Approaches for secrecy based on channel coding design are then examined, along
with a description of inter-disciplinary approaches based on game theory and
stochastic geometry. The associated problem of physical-layer message
authentication is also introduced briefly. The survey concludes with
observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with
arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials,
201
Secure Full-Duplex Spectrum-Sharing Wiretap Networks with Different Antenna Reception Schemes
In this paper, we investigate the secrecy performance of full-duplex multi-antenna spectrum-sharing wiretap networks, in which a jamming signal is simultaneously transmitted by the full-duplex secondary receiver (Bob) based on the zero forcing beamforming (ZFB) algorithm. For the security enhancement, we propose the two antenna reception schemes, i.e., (i) random selection combining (RSC) where Bob selects LB antennas at random to combine the received signals, and (ii) generalized selection combining (GSC) where Bob selects LB strongest antennas to combine the received signals. We derive the exact closed-form expressions for the secrecy outage probability of fullduplex multi-antenna spectrum-sharing wiretap networks with ZFB algorithm. In order to explore a new design of the proposed schemes, we provide tractable asymptotic approximations for the secrecy outage probability in high signal-to-noise ratio regime under two distinct scenarios. From the analysis, we demonstrate that a) when the main channel is much better than the eavesdropper’s channel, GSC/ZFB scheme achieves full diversity NB while RSC/ZFB scheme only achieves partial diversity LB, b) GSC/ZFB scheme achieves better secrecy performance than RSC/ZFB with different antenna numbers at Bob
Cooperative Jamming for Secure Communications in MIMO Relay Networks
Secure communications can be impeded by eavesdroppers in conventional relay
systems. This paper proposes cooperative jamming strategies for two-hop relay
networks where the eavesdropper can wiretap the relay channels in both hops. In
these approaches, the normally inactive nodes in the relay network can be used
as cooperative jamming sources to confuse the eavesdropper. Linear precoding
schemes are investigated for two scenarios where single or multiple data
streams are transmitted via a decode-and-forward (DF) relay, under the
assumption that global channel state information (CSI) is available. For the
case of single data stream transmission, we derive closed-form jamming
beamformers and the corresponding optimal power allocation. Generalized
singular value decomposition (GSVD)-based secure relaying schemes are proposed
for the transmission of multiple data streams. The optimal power allocation is
found for the GSVD relaying scheme via geometric programming. Based on this
result, a GSVD-based cooperative jamming scheme is proposed that shows
significant improvement in terms of secrecy rate compared to the approach
without jamming. Furthermore, the case involving an eavesdropper with unknown
CSI is also investigated in this paper. Simulation results show that the
secrecy rate is dramatically increased when inactive nodes in the relay network
participate in cooperative jamming.Comment: 30 pages, 7 figures, to appear in IEEE Transactions on Signal
Processin
Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection
In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116
- …
