2,015 research outputs found

    Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

    Full text link
    A recent trend in DNN development is to extend the reach of deep learning applications to platforms that are more resource and energy constrained, e.g., mobile devices. These endeavors aim to reduce the DNN model size and improve the hardware processing efficiency, and have resulted in DNNs that are much more compact in their structures and/or have high data sparsity. These compact or sparse models are different from the traditional large ones in that there is much more variation in their layer shapes and sizes, and often require specialized hardware to exploit sparsity for performance improvement. Thus, many DNN accelerators designed for large DNNs do not perform well on these models. In this work, we present Eyeriss v2, a DNN accelerator architecture designed for running compact and sparse DNNs. To deal with the widely varying layer shapes and sizes, it introduces a highly flexible on-chip network, called hierarchical mesh, that can adapt to the different amounts of data reuse and bandwidth requirements of different data types, which improves the utilization of the computation resources. Furthermore, Eyeriss v2 can process sparse data directly in the compressed domain for both weights and activations, and therefore is able to improve both processing speed and energy efficiency with sparse models. Overall, with sparse MobileNet, Eyeriss v2 in a 65nm CMOS process achieves a throughput of 1470.6 inferences/sec and 2560.3 inferences/J at a batch size of 1, which is 12.6x faster and 2.5x more energy efficient than the original Eyeriss running MobileNet. We also present an analysis methodology called Eyexam that provides a systematic way of understanding the performance limits for DNN processors as a function of specific characteristics of the DNN model and accelerator design; it applies these characteristics as sequential steps to increasingly tighten the bound on the performance limits.Comment: accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems. This extended version on arXiv also includes Eyexam in the appendi

    On the efficient representation and execution of deep acoustic models

    Full text link
    In this paper we present a simple and computationally efficient quantization scheme that enables us to reduce the resolution of the parameters of a neural network from 32-bit floating point values to 8-bit integer values. The proposed quantization scheme leads to significant memory savings and enables the use of optimized hardware instructions for integer arithmetic, thus significantly reducing the cost of inference. Finally, we propose a "quantization aware" training process that applies the proposed scheme during network training and find that it allows us to recover most of the loss in accuracy introduced by quantization. We validate the proposed techniques by applying them to a long short-term memory-based acoustic model on an open-ended large vocabulary speech recognition task.Comment: Accepted conference paper: "The Annual Conference of the International Speech Communication Association (Interspeech), 2016

    Mining Dynamic Document Spaces with Massively Parallel Embedded Processors

    Get PDF
    Currently Océ investigates future document management services. One of these services is accessing dynamic document spaces, i.e. improving the access to document spaces which are frequently updated (like newsgroups). This process is rather computational intensive. This paper describes the research conducted on software development for massively parallel processors. A prototype has been built which processes streams of information from specified newsgroups and transforms them into personal information maps. Although this technology does speed up the training part compared to a general purpose processor implementation, however, its real benefits emerges with larger problem dimensions because of the scalable approach. It is recommended to improve on quality of the map as well as on visualisation and to better profile the performance of the other parts of the pipeline, i.e. feature extraction and visualisation

    Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

    Full text link
    The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried out using integer-only arithmetic, which can be implemented more efficiently than floating point inference on commonly available integer-only hardware. We also co-design a training procedure to preserve end-to-end model accuracy post quantization. As a result, the proposed quantization scheme improves the tradeoff between accuracy and on-device latency. The improvements are significant even on MobileNets, a model family known for run-time efficiency, and are demonstrated in ImageNet classification and COCO detection on popular CPUs.Comment: 14 pages, 12 figure
    corecore