13 research outputs found

    An Estelle compiler

    Get PDF
    The increasing development and use of computer networks has necessitated international standards to be defined. Central to the standardization efforts is the concept of a Formal Description Technique (FDT) which is used to provide a definition medium for communication protocols and services. This document describes the design and implementation of one of the few existing compilers for the one such FDT, the language "Estelle" ([ISO85], [ISO86], [ISO87])

    Improving Data Access Efficiency by Using a Tagless Access Buffer (TAB)

    No full text
    The need for energy efficiency continues to grow for many classes of processors, including those for which performance remains vital. Data cache is crucial for good performance, but it also represents a significant portion of the processor\u27s energy expenditure. We describe the implementation and use of a tagless access buffer (TAB) that greatly improves data access energy efficiency while slightly improving performance. The compiler recognizes memory reference patterns within loops and allocates these references to a TAB. This combined hardware/software approach reduces energy usage by (1) replacing many level-one data cache (L1D) accesses with accesses to the smaller, more power-efficient TAB; (2) removing the need to perform tag checks or data translation lookaside buffer (DTLB) lookups for TAB accesses; and (3) reducing DTLB lookups when transferring data between the L1D and the TAB. Accesses to the TAB occur earlier in the pipeline, and data lines are prefetched from lower memory levels, which result in asmall performance improvement. In addition, we can avoid many unnecessary block transfers between other memory hierarchy levels by characterizing how data in the TAB are used. With a combined size equal to that of a conventional 32-entry register file, a four-entry TAB eliminates 40% of L1D accesses and 42% of DTLB accesses, on average. This configuration reduces data-access related energy by 35% while simultaneously decreasing execution time by 3%

    ARCHITECTING EMERGING MEMORY TECHNOLOGIES FOR ENERGY-EFFICIENT COMPUTING IN MODERN PROCESSORS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An Architecture for the Compilation of Persistent Polymorphic Reflective Higher-Order Languages

    Get PDF
    Persistent Application Systems are potentially very large and long-lived application systems which use information technology: computers, communications, networks, software and databases. They are vital to the organisations that depend on them and have to be adaptable to organisational and technological changes and evolvable without serious interruption of service. Persistent Programming Languages are a promising technology that facilitate the task of incrementally building and maintaining persistent application systems. This thesis identifies a number of technical challenges in making persistent programming languages scalable, with adequate performance and sufficient longevity and in amortising costs by providing general services. A new architecture to support the compilation of long-lived, large-scale applications is proposed. This architecture comprises an intermediate language to be used by front-ends, high-level and machine independent optimisers, low-level optimisers and code generators of target machine code. The intermediate target language, TPL, has been designed to allow compiler writers to utilise common technology for several different orthogonally persistent higher-order reflective languages. The goal is to reuse optimisation and code-generation or interpretation technology with a variety of front-ends. A subsidiary goal is to provide an experimental framework for those investigating optimisation and code generation. TPL has a simple, clean type system and will support orthogonally persistent, reflective, higher-order, polymorphic languages. TPL allows code generation and the abstraction over details of the underlying software and hardware layers. An experiment to build a prototype of the proposed architecture was designed, developed and evaluated. The experimental work includes a language processor and examples of its use are presented in this dissertation. The design space was covered by describing the implications of the goals of supporting the class of languages anticipated while ensuring long-term persistence of data and programs, and sufficient efficiency. For each of the goals, the design decisions were evaluated in face of the results

    Granularity in Large-Scale Parallel Functional Programming

    Get PDF
    This thesis demonstrates how to reduce the runtime of large non-strict functional programs using parallel evaluation. The parallelisation of several programs shows the importance of granularity, i.e. the computation costs of program expressions. The aspect of granularity is studied both on a practical level, by presenting and measuring runtime granularity improvement mechanisms, and at a more formal level, by devising a static granularity analysis. By parallelising several large functional programs this thesis demonstrates for the first time the advantages of combining lazy and parallel evaluation on a large scale: laziness aids modularity, while parallelism reduces runtime. One of the parallel programs is the Lolita system which, with more than 47,000 lines of code, is the largest existing parallel non-strict functional program. A new mechanism for parallel programming, evaluation strategies, to which this thesis contributes, is shown to be useful in this parallelisation. Evaluation strategies simplify parallel programming by separating algorithmic code from code specifying dynamic behaviour. For large programs the abstraction provided by functions is maintained by using a data-oriented style of parallelism, which defines parallelism over intermediate data structures rather than inside the functions. A highly parameterised simulator, GRANSIM, has been constructed collaboratively and is discussed in detail in this thesis. GRANSIM is a tool for architecture-independent parallelisation and a testbed for implementing runtime-system features of the parallel graph reduction model. By providing an idealised as well as an accurate model of the underlying parallel machine, GRANSIM has proven to be an essential part of an integrated parallel software engineering environment. Several parallel runtime- system features, such as granularity improvement mechanisms, have been tested via GRANSIM. It is publicly available and in active use at several universities worldwide. In order to provide granularity information this thesis presents an inference-based static granularity analysis. This analysis combines two existing analyses, one for cost and one for size information. It determines an upper bound for the computation costs of evaluating an expression in a simple strict higher-order language. By exposing recurrences during cost reconstruction and using a library of recurrences and their closed forms, it is possible to infer the costs for some recursive functions. The possible performance improvements are assessed by measuring the parallel performance of a hand-analysed and annotated program

    Compilation and Code Optimization for Data Analytics

    Get PDF
    The trade-offs between the use of modern high-level and low-level programming languages in constructing complex software artifacts are well known. High-level languages allow for greater programmer productivity: abstraction and genericity allow for the same functionality to be implemented with significantly less code compared to low-level languages. Modularity, object-orientation, functional programming, and powerful type systems allow programmers not only to create clean abstractions and protect them from leaking, but also to define code units that are reusable and easily composable, and software architectures that are adaptable and extensible. The abstraction, succinctness, and modularity of high-level code help to avoid software bugs and facilitate debugging and maintenance. The use of high-level languages comes at a performance cost: increased indirection due to abstraction, virtualization, and interpretation, and superfluous work, particularly in the form of tempory memory allocation and deallocation to support objects and encapsulation. As a result of this, the cost of high-level languages for performance-critical systems may seem prohibitive. The vision of abstraction without regret argues that it is possible to use high-level languages for building performance-critical systems that allow for both productivity and high performance, instead of trading off the former for the latter. In this thesis, we realize this vision for building different types of data analytics systems. Our means of achieving this is by employing compilation. The goal is to compile away expensive language features -- to compile high-level code down to efficient low-level code

    Compilation and Code Optimization for Data Analytics

    Get PDF
    The trade-offs between the use of modern high-level and low-level programming languages in constructing complex software artifacts are well known. High-level languages allow for greater programmer productivity: abstraction and genericity allow for the same functionality to be implemented with significantly less code compared to low-level languages. Modularity, object-orientation, functional programming, and powerful type systems allow programmers not only to create clean abstractions and protect them from leaking, but also to define code units that are reusable and easily composable, and software architectures that are adaptable and extensible. The abstraction, succinctness, and modularity of high-level code help to avoid software bugs and facilitate debugging and maintenance. The use of high-level languages comes at a performance cost: increased indirection due to abstraction, virtualization, and interpretation, and superfluous work, particularly in the form of tempory memory allocation and deallocation to support objects and encapsulation. As a result of this, the cost of high-level languages for performance-critical systems may seem prohibitive. The vision of abstraction without regret argues that it is possible to use high-level languages for building performance-critical systems that allow for both productivity and high performance, instead of trading off the former for the latter. In this thesis, we realize this vision for building different types of data analytics systems. Our means of achieving this is by employing compilation. The goal is to compile away expensive language features -- to compile high-level code down to efficient low-level code

    Exploring the Molecular Mechanisms of SARS-CoV2 and ZIKV Pathogenesis

    Get PDF
    corecore