16 research outputs found

    A Further Study of Unsupervised Pre-training for Transformer Based Speech Recognition

    Full text link
    Building a good speech recognition system usually requires large amounts of transcribed data, which is expensive to collect. To tackle this problem, many unsupervised pre-training methods have been proposed. Among these methods, Masked Predictive Coding achieved significant improvements on various speech recognition datasets with BERT-like Masked Reconstruction loss and Transformer backbone. However, many aspects of MPC have not been fully investigated. In this paper, we conduct a further study on MPC and focus on three important aspects: the effect of pre-training data speaking style, its extension on streaming model, and how to better transfer learned knowledge from pre-training stage to downstream tasks. Experiments reveled that pre-training data with matching speaking style is more useful on downstream recognition tasks. A unified training objective with APC and MPC provided 8.46% relative error reduction on streaming model trained on HKUST. Also, the combination of target data adaption and layer-wise discriminative training helped the knowledge transfer of MPC, which achieved 3.99% relative error reduction on AISHELL over a strong baseline

    Improved Speech Representations with Multi-Target Autoregressive Predictive Coding

    Full text link
    Training objectives based on predictive coding have recently been shown to be very effective at learning meaningful representations from unlabeled speech. One example is Autoregressive Predictive Coding (Chung et al., 2019), which trains an autoregressive RNN to generate an unseen future frame given a context such as recent past frames. The basic hypothesis of these approaches is that hidden states that can accurately predict future frames are a useful representation for many downstream tasks. In this paper we extend this hypothesis and aim to enrich the information encoded in the hidden states by training the model to make more accurate future predictions. We propose an auxiliary objective that serves as a regularization to improve generalization of the future frame prediction task. Experimental results on phonetic classification, speech recognition, and speech translation not only support the hypothesis, but also demonstrate the effectiveness of our approach in learning representations that contain richer phonetic content.Comment: Accepted to ACL 202

    Bi-APC: Bidirectional Autoregressive Predictive Coding for Unsupervised Pre-training and Its Application to Children's ASR

    Full text link
    We present a bidirectional unsupervised model pre-training (UPT) method and apply it to children's automatic speech recognition (ASR). An obstacle to improving child ASR is the scarcity of child speech databases. A common approach to alleviate this problem is model pre-training using data from adult speech. Pre-training can be done using supervised (SPT) or unsupervised methods, depending on the availability of annotations. Typically, SPT performs better. In this paper, we focus on UPT to address the situations when pre-training data are unlabeled. Autoregressive predictive coding (APC), a UPT method, predicts frames from only one direction, limiting its use to uni-directional pre-training. Conventional bidirectional UPT methods, however, predict only a small portion of frames. To extend the benefits of APC to bi-directional pre-training, Bi-APC is proposed. We then use adaptation techniques to transfer knowledge learned from adult speech (using the Librispeech corpus) to child speech (OGI Kids corpus). LSTM-based hybrid systems are investigated. For the uni-LSTM structure, APC obtains similar WER improvements to SPT over the baseline. When applied to BLSTM, however, APC is not as competitive as SPT, but our proposed Bi-APC has comparable improvements to SPT.Comment: Accepted to ICASSP202

    Incremental Learning for End-to-End Automatic Speech Recognition

    Full text link
    We propose a new incremental learning for end-to-end Automatic Speech Recognition (ASR) to extend the model's capacity on a new task while retaining the performance on previous ones. The proposed method is effective without accessing to the old dataset to address the issues of high retraining cost and unavailable old dataset. To achieve this, both attention distillation and knowledge distillation are applied to preserve the ability of the old model during the progressive learning. With an ASR model pre-trained on 12,000h Mandarin speech, we test our proposed method on 300h new scenario task and 1h new named entities task. Experiments show that our method yields 3.25% and 0.88% absolute Character Error Rate (CER) reduction on the new scenario, when compared with the pre-trained model and the full-data retraining baseline, respectively. It even yields a surprising 0.37% absolute CER reduction on the new scenario than the fine-tuning. For the new named entities task, our method significantly improves the accuracy compared with the pre-trained model, i.e. 16.95% absolute CER reduction. For both of the new task adaptions, the new models still maintain a same accuracy with the retraining baseline on the old tasks.Comment: 5 pages, 3 figure

    Exploring wav2vec 2.0 on speaker verification and language identification

    Full text link
    Wav2vec 2.0 is a recently proposed self-supervised framework for speech representation learning. It follows a two-stage training process of pre-training and fine-tuning, and performs well in speech recognition tasks especially ultra-low resource cases. In this work, we attempt to extend self-supervised framework to speaker verification and language identification. First, we use some preliminary experiments to indicate that wav2vec 2.0 can capture the information about the speaker and language. Then we demonstrate the effectiveness of wav2vec 2.0 on the two tasks respectively. For speaker verification, we obtain a new state-of-the-art result, Equal Error Rate (EER) of 3.61% on the VoxCeleb1 dataset. For language identification, we obtain an EER of 12.02% on 1 second condition and an EER of 3.47% on full-length condition of the AP17-OLR dataset. Finally, we utilize one model to achieve the unified modeling by the multi-task learning for the two tasks.Comment: Self-supervised, speaker verification, language identification, multi-task learning, wav2vec 2.

    Efficiently Fusing Pretrained Acoustic and Linguistic Encoders for Low-resource Speech Recognition

    Full text link
    End-to-end models have achieved impressive results on the task of automatic speech recognition (ASR). For low-resource ASR tasks, however, labeled data can hardly satisfy the demand of end-to-end models. Self-supervised acoustic pre-training has already shown its amazing ASR performance, while the transcription is still inadequate for language modeling in end-to-end models. In this work, we fuse a pre-trained acoustic encoder (wav2vec2.0) and a pre-trained linguistic encoder (BERT) into an end-to-end ASR model. The fused model only needs to learn the transfer from speech to language during fine-tuning on limited labeled data. The length of the two modalities is matched by a monotonic attention mechanism without additional parameters. Besides, a fully connected layer is introduced for the hidden mapping between modalities. We further propose a scheduled fine-tuning strategy to preserve and utilize the text context modeling ability of the pre-trained linguistic encoder. Experiments show our effective utilizing of pre-trained modules. Our model achieves better recognition performance on CALLHOME corpus (15 hours) than other end-to-end models

    Similarity Analysis of Self-Supervised Speech Representations

    Full text link
    Self-supervised speech representation learning has recently been a prosperous research topic. Many algorithms have been proposed for learning useful representations from large-scale unlabeled data, and their applications to a wide range of speech tasks have also been investigated. However, there has been little research focusing on understanding the properties of existing approaches. In this work, we aim to provide a comparative study of some of the most representative self-supervised algorithms. Specifically, we quantify the similarities between different self-supervised representations using existing similarity measures. We also design probing tasks to study the correlation between the models' pre-training loss and the amount of specific speech information contained in their learned representations. In addition to showing how various self-supervised models behave differently given the same input, our study also finds that the training objective has a higher impact on representation similarity than architectural choices such as building blocks (RNN/Transformer/CNN) and directionality (uni/bidirectional). Our results also suggest that there exists a strong correlation between pre-training loss and downstream performance for some self-supervised algorithms.Comment: Accepted to ICASSP 2021. Supplementary materials available at https://github.com/iamyuanchung/ICASSP21-Similarity-Supplementar

    DiDiSpeech: A Large Scale Mandarin Speech Corpus

    Full text link
    This paper introduces a new open-sourced Mandarin speech corpus, called DiDiSpeech. It consists of about 800 hours of speech data at 48kHz sampling rate from 6000 speakers and the corresponding texts. All speech data in the corpus is recorded in quiet environment and is suitable for various speech processing tasks, such as voice conversion, multi-speaker text-to-speech and automatic speech recognition. We conduct experiments with multiple speech tasks and evaluate the performance, showing that it is promising to use the corpus for both academic research and practical application. The corpus is available at https://outreach.didichuxing.com/research/opendata/.Comment: 5 pages, 2 figures, 11 table

    Embodied Self-supervised Learning by Coordinated Sampling and Training

    Full text link
    Self-supervised learning can significantly improve the performance of downstream tasks, however, the dimensions of learned representations normally lack explicit physical meanings. In this work, we propose a novel self-supervised approach to solve inverse problems by employing the corresponding physical forward process so that the learned representations can have explicit physical meanings. The proposed approach works in an analysis-by-synthesis manner to learn an inference network by iteratively sampling and training. At the sampling step, given observed data, the inference network is used to approximate the intractable posterior, from which we sample input parameters and feed them to a physical process to generate data in the observational space; At the training step, the same network is optimized with the sampled paired data. We prove the feasibility of the proposed method by tackling the acoustic-to-articulatory inversion problem to infer articulatory information from speech. Given an articulatory synthesizer, an inference model can be trained completely from scratch with random initialization. Our experiments demonstrate that the proposed method can converge steadily and the network learns to control the articulatory synthesizer to speak like a human. We also demonstrate that trained models can generalize well to unseen speakers or even new languages, and performance can be further improved through self-adaptation

    Unsupervised Cross-lingual Representation Learning for Speech Recognition

    Full text link
    This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages
    corecore