45,185 research outputs found

    CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise

    Full text link
    In this paper, we study the problem of learning image classification models with label noise. Existing approaches depending on human supervision are generally not scalable as manually identifying correct or incorrect labels is time-consuming, whereas approaches not relying on human supervision are scalable but less effective. To reduce the amount of human supervision for label noise cleaning, we introduce CleanNet, a joint neural embedding network, which only requires a fraction of the classes being manually verified to provide the knowledge of label noise that can be transferred to other classes. We further integrate CleanNet and conventional convolutional neural network classifier into one framework for image classification learning. We demonstrate the effectiveness of the proposed algorithm on both of the label noise detection task and the image classification on noisy data task on several large-scale datasets. Experimental results show that CleanNet can reduce label noise detection error rate on held-out classes where no human supervision available by 41.5% compared to current weakly supervised methods. It also achieves 47% of the performance gain of verifying all images with only 3.2% images verified on an image classification task. Source code and dataset will be available at kuanghuei.github.io/CleanNetProject.Comment: Accepted to CVPR 201

    ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models

    Full text link
    Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs. Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to efficiently attack black-box models. By exploiting zeroth order optimization, improved attacks to the targeted DNN can be accomplished, sparing the need for training substitute models and avoiding the loss in attack transferability. Experimental results on MNIST, CIFAR10 and ImageNet show that the proposed ZOO attack is as effective as the state-of-the-art white-box attack and significantly outperforms existing black-box attacks via substitute models.Comment: Accepted by 10th ACM Workshop on Artificial Intelligence and Security (AISEC) with the 24th ACM Conference on Computer and Communications Security (CCS
    • …
    corecore