2 research outputs found

    Understanding and Improving the Soil Moisture Retrieval Algorithm under Space, Time and Heterogeneity

    Get PDF
    The spatial and temporal monitoring of soil moisture from remote sensing platforms plays a pivotal role in predicting the future food and water security. That is, improving soil moisture estimation at remote sensing platforms has remarkable impacts in the fields of meteorology, hydrology, agriculture, and global climate change. However, remote sensing of soil moisture for long is hindered by spatial heterogeneity in land surface variables (soil, biomass, topography, and temperature) which cause systematic and random errors in soil moisture retrievals. Most soil moisture improvement methods to date focused on the downscaling of either coarse resolution soil moisture or brightness temperature based on fine scale ancillary information of land surface variables. Comparatively little work has been done on improving the parameterization of most sensitive variables to radiative transfer model that impact soil moisture retrieval accuracy. In addition, the classic radiative transfer model assumes the vegetation and surface roughness parameters, as constant with space and time which undermines the retrieval accuracy. Also, it is largely elusive so far the discussion on the non-linearity of microwave radiative transfer model and its relationship with energy and water fluxes. In order to address the above mentioned limitations, this dissertation aims to develop and validate a soil moisture modeling framework with associated improved parameterizations for surface roughness and vegetation optical depth (VOD) in the homogeneous and heterogeneous environments. To this end, the following research work is specifically conducted: (a) conduct comprehensive sensitivity analysis on radiative transfer model with space, time and hydroclimates; (b) develop multi-scale surface roughness model which incorporates small (soil) and large (topography) surface undulations to improve soil moisture retrievals; (c) improve the parameterization of vegetation topical depth (VOD) using within-pixel biomass heterogeneity to improved soil moisture accuracy; (d) investigate the non-linearity in microwave radiative transfer model, and its association with thermal energy fluxes. The results of this study showed that: (a) the total (linear + non-linear) sensitivity of soil, temperature and biomass variables varied with spatial scale (support), time, and hydro climates, with higher non-linearity observed for dense biomass regions. This non-linearity is also governed by soil moisture availability and temperature. Among these variables, surface roughness and vegetation optical depth are most sensitive variables to radiative transfer model (RTM); (b) considering the spatial and temporal variability in parameterization of surface roughness and VOD has improved soil moisture retrieval accuracy, importantly in cropland and forest environments; and (c) the soil moisture estimated through evaporative fraction (EF) correlates higher with VOD corrected soil moisture

    Physics-based Modeling for High-fidelity Radar Retrievals.

    Full text link
    Knowledge of soil moisture on a global scale is crucial for understanding the Earth's water, energy, and carbon cycles. This dissertation is motivated by the need for accurate soil moisture estimates and focuses on the improvement of soil moisture retrieval based on active remote sensing over vegetated areas. It addresses important, but often neglected, aspects in radar imaging: effects related to the ionosphere, multispecies vegetation (heterogeneity at pixel level), and heterogeneity at landscape level. The first contribution is the development of a generalized radar scattering model as an advancement of current radar modeling techniques for vegetated areas at fine-scale pixel level. It consists of realistic representations of multispecies and subsurface soil layer modeling, and includes terrain topography. This modeling improvement allows greater applicability to different land cover types and higher soil moisture retrieval accuracy. Most coarse-scale satellite pixels (km-scale or coarser) contain highly heterogeneous scenes with fine-scale (100 m or finer) variability of soil moisture, soil texture, topography, and vegetation cover. The second contribution is the development of spatial scaling techniques to investigate effects of landscape-level heterogeneity on radar scattering signatures. Using the above radar forward scattering model, which assumes homogeneity over fine scales, tailor-made models are derived for the contribution of fine-scale heterogeneity to the coarse-scale satellite pixel for effective soil moisture retrieval. Finally, the third contribution is the development of a self-contained calibration technique based on an end-to-end radar system model. The model includes ionospheric effects allowing the use of spaceborne radar signals for accurate soil moisture retrieval from lower frequencies, such as L- and P-band. These combined contributions will greatly increase the usability of low-frequency spaceborne radar data for soil moisture retrieval: ionospheric effects are mitigated, landscape level heterogeneity is resolved, and fine-scale scenes are better modeled. These contributions ultimately allow improved fidelity in soil moisture retrieval and are immediately applicable in current missions such as the ongoing AirMOSS mission that observes root-zone soil moisture with a P-band radar at fine-scale resolution (100 m), and NASA's upcoming SMAP spaceborne mission, which will assess surface soil moisture with an L-band radar and radiometer at km-scale resolution (3 km).PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107290/1/mburgin_1.pd
    corecore