1 research outputs found

    ๋งํฌ ์˜ˆ์ธก์„ ์ด์šฉํ•œ ๊ธˆ์œต์‹œ์žฅ ๋ณต์žก๊ณ„ ๋„คํŠธ์›Œํฌ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ์žฅ์šฐ์ง„.Financial risk sets off a chain reaction in the market and leads to a collapse of the system, called a domino effect. Since the U.S. subprime mortgage crisis in 2008 hit economies across the world, it has emerged important research fields to understand and analyze the financial system properly to deal with financial risk. Econophysics is an interdisciplinary research field to explain the stylized facts in financial systems that are unexplainable by traditional financial theories. In particular, the complex network models that represent a system by nodes and links are widely applied regardless of research areas. However, since the existing complex network models for financial markets usually end up in confirming empirical results such as a structural change in the network and diffusion paths of risk, based on historical data, it has limitations to suggest direct alternatives. To cope with these limitations, this dissertation proposes a link prediction model based on the real effective exchange rate (REER) that reveals the relationships clearly between the compositions. At first, it is confirmed that the network successfully mimics the market to ensure the validity of the network structure prediction. The results show that the return of REER has fat-tailed distributions whose tails are not exponentially bounded and follow a power-law. Also, for the analysis, the changes are focused on cross-sectional topology and time-varying properties of the network during the U.S. subprime mortgage crisis, the European debt crisis, and the Chinese stock market turbulence. The result implies that the network appropriately describes the market by showing the significant increments in out-degrees and in-degrees of the originating continents of the crises. Secondly, the Weighted Causality Link Prediction (WCLP) model is proposed to predict future possible links by measuring the similarities between different nodes. This model has differentiations that it measures the strength of directed Granger causality directions as effect sizes based on FF-statistics, while the existing models are based on correlations. The experiment is conducted under the hypothesis that the intensity of connections is different from each other and maintains longer when the effect size is larger. The higher prediction accuracy is observed rather than that of unweighted or correlation-based weighted models by showing the statistical significance of higher Area Under Curve (AUC) in every aspects. Finally, a decision making model for investment is proposed based on the results of the link prediction. Once the portfolio is composed of stocks located in the periphery of the PMFG, it distributes the risk due to the low correlation between assets. However, the correlation does not represent the relationship by time lags since it implies only the extent of association between them. Therefore, this dissertation proposes the Weighted Causality Planar Graph (WCPG) that is improved from the Planar Correlation Planar Graph (PCPG) model. It differs from the existing models in that it considers directions and strength of links based on the similarity score between assets. As a result, the proposed model improves the performance in terms of risk-adjusted return compared to the benchmarks. Especially, it has an advantage in long-term investment for over 6 months. In conclusion, the contributions of this dissertation involve the development of an effective link prediction model based on the effect size and the attempt to suggest a decision-making model for investment.๊ธˆ์œต ์‹œ์žฅ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์œ„ํ—˜์€ ํ•˜๋‚˜์˜ ๊ธˆ์œต ์ฒด๊ณ„(System)์—์„œ ์—ฐ์‡„ ์ž‘์šฉ์œผ๋กœ ์ด์–ด์ง€๋ฉฐ ์ด๊ฒƒ์€ ๊ณง ์‹œ์Šคํ…œ์˜ ๋ถ•๊ดด๋กœ ์ด์–ด์ง„๋‹ค. ์„ธ๊ณ„ ๊ฒฝ์ œ์— ํฐ ํƒ€๊ฒฉ์„ ์ฃผ์—ˆ๋˜ ๋ฏธ๊ตญ์˜ ์„œ๋ธŒํ”„๋ผ์ž„ ๋ชจ๊ธฐ์ง€ ์‚ฌํƒœ ์ดํ›„ ์œ„๊ธฐ ๋Œ€์ฒ˜ ๋Šฅ๋ ฅ ์ œ๊ณ ๋ฅผ ์œ„ํ•ด ๊ธˆ์œต ์ฒด๊ณ„๋ฅผ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ดํ•ดํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•œ ๊ณผ์ œ๋กœ ๋– ์˜ฌ๋ž๋‹ค. ์ „ํ†ต์ ์ธ ๊ธˆ์œต ์œ„ํ—˜ ๊ด€๋ฆฌ ์ด๋ก ์œผ๋กœ ์„ค๋ช…๋˜์ง€ ์•Š๋Š” ์ •ํ˜•ํ™”๋œ ์‚ฌ์‹ค(stylized facts)๋“ค์˜ ๋ฐœ๊ฒฌ์œผ๋กœ ์ƒˆ๋กญ๊ฒŒ ๋“ฑ์žฅํ•œ ์—ฐ๊ตฌ ๋ถ„์•ผ๊ฐ€ ๊ฒฝ์ œ๋ฌผ๋ฆฌํ•™(Econophysics)์ด๋‹ค. ํŠนํžˆ, ์ (๋…ธ๋“œ)๊ณผ ์„ (๋งํฌ)์œผ๋กœ ํ•˜๋‚˜์˜ ์ฒด๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ณต์žก๊ณ„ ๋„คํŠธ์›Œํฌ ๋ชจํ˜•์€ ๋ถ„์•ผ๋ฅผ ๋ง‰๋ก ํ•˜๊ณ  ๋‹ค์–‘ํ•˜๊ฒŒ ์‘์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ธˆ์œต ์‹œ์žฅ์— ๋Œ€ํ•œ ๊ธฐ์กด์˜ ๋ณต์žก๊ณ„ ๋„คํŠธ์›Œํฌ ๋ชจํ˜•์€ ๋Œ€๋ถ€๋ถ„ ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋ณ€ํ™”, ์œ„ํ—˜์˜ ํ™•์‚ฐ ๊ฒฝ๋กœ์™€ ๊ฐ™์€ ์‹ค์ฆ์  ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜๋Š” ๋ฐ ๊ทธ์ณ ์œ„ํ—˜์— ๋Œ€๋น„ํ•œ ๋Šฅ๋™์ ์ธ ๋Œ€์•ˆ์„ ์ œ์‹œํ•˜๋Š”๋ฐ ์ œ์•ฝ์ด ์กด์žฌํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ๊ฒฐ์ ์„ ๋ณด์™„ํ•˜๊ณ ์ž ๋„คํŠธ์›Œํฌ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„ ๊ด€๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚˜๋Š” ํ™˜์œจ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ๋„คํŠธ์›Œํฌ ๋งํฌ ์˜ˆ์ธก ๋ชจํ˜•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋จผ์ €, ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ์˜ˆ์ธก์˜ ํƒ€๋‹น์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ๋„คํŠธ์›Œํฌ๊ฐ€ ์‹œ์žฅ์„ ์„ฑ๊ณต์ ์œผ๋กœ ๋ชจ๋ฐฉํ•˜๋Š”์ง€ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์‹ค์งˆ์‹คํšจํ™˜์œจ ๋ฐ์ดํ„ฐ๋Š” ๋‘๊บผ์šด ๊ผฌ๋ฆฌ(Fat-tailed) ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋ฉฐ ๊ผฌ๋ฆฌ ๋ถ„ํฌ๊ฐ€ ๋ฉฑํ•จ์ˆ˜(Power-law) ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ฏธ๊ตญ์˜ ์„œ๋ธŒํ”„๋ผ์ž„ ๋ชจ๊ธฐ์ง€ ์‚ฌํƒœ, ์œ ๋Ÿฝ ๋ถ€์ฑ„ ์œ„๊ธฐ, ์ค‘๊ตญ ์ฃผ์‹ ์‹œ์žฅ ์œ„๊ธฐ ๋™์•ˆ ๋„คํŠธ์›Œํฌ์˜ ๋‹จ๋ฉด(cross-sectional) ํ† ํด๋กœ์ง€์™€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ์„ฑ์งˆ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์œ„๊ธฐ ๋ฐœ์ƒ ๋Œ€๋ฅ™์—์„œ ์ฆ๊ฐ€ํ•˜๋Š” ๋งํฌ์˜ ์ˆ˜๋Ÿ‰์„ ๋ดค์„ ๋•Œ ์ œ์‹œ๋œ ๊ทธ๋ ˆ์ธ์ €-์ธ๊ณผ๊ด€๊ณ„(Granger causality) ๋„คํŠธ์›Œํฌ๊ฐ€ ์‹œ์žฅ์„ ์ ์ ˆํžˆ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋„คํŠธ์›Œํฌ์—์„œ ์ƒˆ๋กญ๊ฒŒ ์ƒ๊ฒจ๋‚  ์ˆ˜ ์žˆ๋Š” ๋งํฌ๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„ ์œ ์‚ฌ๋„๋ฅผ ์ธก์ •ํ•˜๋Š” Weighted Causality Link Prediction (WCLP) ๋ชจํ˜•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ๋งŽ์€ ๋„คํŠธ์›Œํฌ ๋ชจํ˜•์ด ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„์— ๊ธฐ๋ฐ˜ํ•˜์˜€๋‹ค๋ฉด, ๋ณธ ๋ชจํ˜•์€ ๊ทธ๋ ˆ์ธ์ € ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ์ธก์ •ํ•˜์—ฌ ๋„คํŠธ์›Œํฌ์˜ ๋ฐฉํ–ฅ์„ฑ์„ ํ•จ๊ป˜ ๊ณ ๋ คํ•˜๊ณ , ์—ฐ๊ฒฐ ๊ฐ•๋„๋ฅผ ํ†ต๊ณ„๋Ÿ‰์— ๊ธฐ๋ฐ˜ํ•œ ํšจ๊ณผ ํฌ๊ธฐ(Effect size)๋กœ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค๋Š” ์ ์—์„œ ๊ทธ ์ฐจ๋ณ„์„ฑ์ด ์žˆ๋‹ค. ๋„คํŠธ์›Œํฌ์˜ ๋งํฌ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์—ฐ๊ฒฐ ๊ฐ•๋„๋ฅผ ๊ฐ€์ง€๋ฉฐ ํšจ๊ณผ ํฌ๊ธฐ๊ฐ€ ํด ์ˆ˜๋ก ์˜ค๋ž˜ ์œ ์ง€๋œ๋‹ค๋Š” ๊ฐ€์„ค ํ•˜์— ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋†’์€ ์ˆ˜์‹ ์ž ์กฐ์ž‘ ํŠน์„ฑ ๊ณก์„ ์˜ ๋ฉด์  (Area Under the receiver operating characteristic Curve, AUC) ๊ฐ’์„ ๊ฐ€์ ธ ๋น„๊ฐ€์ค‘์น˜(Unweighted) ๋˜๋Š” ์ƒ๊ด€๊ด€๊ณ„ ๊ธฐ๋ฐ˜ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ(Euclidean distance)๋ฅผ ๊ฐ€์ค‘์น˜๋ฅผ ์ด์šฉํ•œ ๊ธฐ์กด ๋ชจํ˜•๋“ค์— ๋น„ํ•ด ํ†ต๊ณ„์ ์œผ๋กœ ๊ฐœ์„ ๋œ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋„คํŠธ์›Œํฌ ๋งํฌ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๊ตญ ๊ธˆ์œต ์‹œ์žฅ์—์„œ์˜ ํˆฌ์ž ์˜์‚ฌ ๊ฒฐ์ • ๋ชจํ˜•์„ ์ œ์‹œํ•˜์˜€๋‹ค. PMFG์˜ ์ฃผ๋ณ€๋ถ€์— ์œ„์น˜ํ•˜๋Š” ์ข…๋ชฉ์œผ๋กœ ํฌํŠธํด๋ฆฌ์˜ค๊ฐ€ ๊ตฌ์„ฑ๋˜๋ฉด, ์ž์‚ฐ ๊ฐ„์˜ ๋‚ฎ์€ ์ƒ๊ด€๊ด€๊ณ„๋Š” ํฌํŠธํด๋ฆฌ์˜ค ์œ„ํ—˜์˜ ๋ถ„์‚ฐํ™”๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ƒ๊ด€๊ด€๊ณ„๋Š” ๋‘ ๋ณ€์ˆ˜ ๊ฐ„ ์—ฐ๊ด€๋œ ์ •๋„๋งŒ์„ ๋‚˜ํƒ€๋‚ด๋ฏ€๋กœ ์‹œ์ฐจ๋ฅผ ๋‘๊ณ  ๋‚˜ํƒ€๋‚˜๋Š” ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด์ง€ ๋ชปํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ Partial Correlation Planar Graph (PCPG) ๋ชจํ˜•์—์„œ ๊ฐœ์„  ๋œ ์ƒˆ๋กœ์šด ๊ทธ๋ž˜ํ”„๋ฅผ ์ œ์‹œํ•˜๊ณ , Weighted Causality Planar Graph (WCPG)๋ผ๊ณ  ๋ช…๋ช…ํ•œ๋‹ค. WCPG๋Š” ๋งํฌ ์˜ˆ์ธก์„ ํ†ตํ•ด ์–ป์€ ์ž์‚ฐ ๊ฐ„ ์œ ์‚ฌ๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง€๋ฉฐ ๋ฐฉํ–ฅ์„ฑ๊ณผ ์„ธ๊ธฐ๊ฐ€ ํ•จ๊ป˜ ๊ณ ๋ ค๋œ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด ๋ชจํ˜•๊ณผ ์ฐจ๋ณ„์„ฑ์ด ์žˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์œ„ํ—˜ ์กฐ์ • ์ˆ˜์ต๋ฅ  ์ธก๋ฉด์—์„œ ์ œ์‹œ๋œ ๋ชจํ˜•์ด ๊ธฐ์กด์˜ ๋„คํŠธ์›Œํฌ ๋ชจํ˜• ๋Œ€๋น„ ๊ฐœ์„ ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ํŠนํžˆ 6๊ฐœ์›” ์ด์ƒ์˜ ์žฅ๊ธฐ ํˆฌ์ž์—์„œ ๊ฐ•์ ์„ ๊ฐ€์กŒ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ํšจ๊ณผ์ ์ธ ๋งํฌ ์˜ˆ์ธก ๋ชจํ˜•์„ ํšจ๊ณผ ํฌ๊ธฐ์™€ ๊ฒฐ๋ถ€ํ•˜์—ฌ ๊ฐœ์„ ๋œ ๋ชจํ˜•์„ ์ œ์‹œํ•˜๊ณ  ํˆฌ์ž ์˜์‚ฌ ๊ฒฐ์ •์„ ์œ„ํ•œ ๋ชจํ˜•์— ์‘์šฉํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ๊ทธ ์˜์˜๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค.Chapter 1 Introduction 1 1.1 Problem Description 1 1.2 Motivations of Research 5 1.3 Organization of the Thesis 7 Chapter 2 Literature Review 9 2.1 Network models 9 2.2 Link Prediction 11 2.3 Portfolio optimization 12 Chapter 3 Time-varying Granger Causality Network 15 3.1 Overview 15 3.2 Architecture of Time-varying Granger Causality Network 16 3.2.1 Granger Causality Direction 16 3.2.2 Granger Causality Network 18 3.2.3 Measures of Granger Causality Network 20 3.3 Data description 21 3.4 Results 25 3.4.1 Cross-sectional Topology of REER Networks 25 3.4.2 Time-varying Properties of REER Networks 38 3.5 Summary and Discussion 44 Chapter 4 Link Prediction 47 4.1 Overview 47 4.2 Benchmarks for Link Prediction 48 4.2.1 Unweighted Measures 48 4.2.2 Weighted Measures 57 4.3 Proposed measures 59 4.4 Results 61 4.4.1 Evaluation of Link Prediction 61 4.4.2 Result of Link Prediction 63 4.5 Summary and Discussion 69 Chapter 5 Application of Link Prediction 71 5.1 Overview 71 5.2 Benchmark models 72 5.2.1 Classical models 72 5.2.2 Planar Maximally Filtered Graph(PMFG) 73 5.3 Weighted Causality Planar Graph(WCPG) 76 5.3.1 Realization of WCPG 76 5.4 Data description 78 5.5 Results 79 5.5.1 Evaluation measures 79 5.5.2 Evaluation of portfolio strategies 82 5.6 Summary and Discussion 92 Chapter 6 Concluding Remarks 95 6.1 Contributions and Limitations 95 6.2 Future Work 98 Bibliography 101 Appendix 117 ๊ตญ๋ฌธ์ดˆ๋ก 125Docto
    corecore