39 research outputs found

    Boosted Cascaded Convnets for Multilabel Classification of Thoracic Diseases in Chest Radiographs

    Full text link
    Chest X-ray is one of the most accessible medical imaging technique for diagnosis of multiple diseases. With the availability of ChestX-ray14, which is a massive dataset of chest X-ray images and provides annotations for 14 thoracic diseases; it is possible to train Deep Convolutional Neural Networks (DCNN) to build Computer Aided Diagnosis (CAD) systems. In this work, we experiment a set of deep learning models and present a cascaded deep neural network that can diagnose all 14 pathologies better than the baseline and is competitive with other published methods. Our work provides the quantitative results to answer following research questions for the dataset: 1) What loss functions to use for training DCNN from scratch on ChestX-ray14 dataset that demonstrates high class imbalance and label co occurrence? 2) How to use cascading to model label dependency and to improve accuracy of the deep learning model?Comment: Submitted to CVPR 201

    A Comparative Study of Deep Learning Loss Functions for Multi-Label Remote Sensing Image Classification

    Full text link
    This paper analyzes and compares different deep learning loss functions in the framework of multi-label remote sensing (RS) image scene classification problems. We consider seven loss functions: 1) cross-entropy loss; 2) focal loss; 3) weighted cross-entropy loss; 4) Hamming loss; 5) Huber loss; 6) ranking loss; and 7) sparseMax loss. All the considered loss functions are analyzed for the first time in RS. After a theoretical analysis, an experimental analysis is carried out to compare the considered loss functions in terms of their: 1) overall accuracy; 2) class imbalance awareness (for which the number of samples associated to each class significantly varies); 3) convexibility and differentiability; and 4) learning efficiency (i.e., convergence speed). On the basis of our analysis, some guidelines are derived for a proper selection of a loss function in multi-label RS scene classification problems.Comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2020. For code visit: https://gitlab.tubit.tu-berlin.de/rsim/RS-MLC-Losse

    ELASTIC: Improving CNNs with Dynamic Scaling Policies

    Full text link
    Scale variation has been a challenge from traditional to modern approaches in computer vision. Most solutions to scale issues have a similar theme: a set of intuitive and manually designed policies that are generic and fixed (e.g. SIFT or feature pyramid). We argue that the scaling policy should be learned from data. In this paper, we introduce ELASTIC, a simple, efficient and yet very effective approach to learn a dynamic scale policy from data. We formulate the scaling policy as a non-linear function inside the network's structure that (a) is learned from data, (b) is instance specific, (c) does not add extra computation, and (d) can be applied on any network architecture. We applied ELASTIC to several state-of-the-art network architectures and showed consistent improvement without extra (sometimes even lower) computation on ImageNet classification, MSCOCO multi-label classification, and PASCAL VOC semantic segmentation. Our results show major improvement for images with scale challenges. Our code is available here: https://github.com/allenai/elasticComment: CVPR 2019 oral, code available https://github.com/allenai/elasti
    corecore