4 research outputs found

    Improving Named Entity Recognition by Jointly Learning to Disambiguate Morphological Tags

    Full text link
    Previous studies have shown that linguistic features of a word such as possession, genitive or other grammatical cases can be employed in word representations of a named entity recognition (NER) tagger to improve the performance for morphologically rich languages. However, these taggers require external morphological disambiguation (MD) tools to function which are hard to obtain or non-existent for many languages. In this work, we propose a model which alleviates the need for such disambiguators by jointly learning NER and MD taggers in languages for which one can provide a list of candidate morphological analyses. We show that this can be done independent of the morphological annotation schemes, which differ among languages. Our experiments employing three different model architectures that join these two tasks show that joint learning improves NER performance. Furthermore, the morphological disambiguator's performance is shown to be competitive.Comment: COLING 2018 (accepted

    Multilingual is not enough: BERT for Finnish

    Full text link
    Deep learning-based language models pretrained on large unannotated text corpora have been demonstrated to allow efficient transfer learning for natural language processing, with recent approaches such as the transformer-based BERT model advancing the state of the art across a variety of tasks. While most work on these models has focused on high-resource languages, in particular English, a number of recent efforts have introduced multilingual models that can be fine-tuned to address tasks in a large number of different languages. However, we still lack a thorough understanding of the capabilities of these models, in particular for lower-resourced languages. In this paper, we focus on Finnish and thoroughly evaluate the multilingual BERT model on a range of tasks, comparing it with a new Finnish BERT model trained from scratch. The new language-specific model is shown to systematically and clearly outperform the multilingual. While the multilingual model largely fails to reach the performance of previously proposed methods, the custom Finnish BERT model establishes new state-of-the-art results on all corpora for all reference tasks: part-of-speech tagging, named entity recognition, and dependency parsing. We release the model and all related resources created for this study with open licenses at https://turkunlp.org/finbert

    CMU-01 at the SIGMORPHON 2019 Shared Task on Crosslinguality and Context in Morphology

    Full text link
    This paper presents the submission by the CMU-01 team to the SIGMORPHON 2019 task 2 of Morphological Analysis and Lemmatization in Context. This task requires us to produce the lemma and morpho-syntactic description of each token in a sequence, for 107 treebanks. We approach this task with a hierarchical neural conditional random field (CRF) model which predicts each coarse-grained feature (eg. POS, Case, etc.) independently. However, most treebanks are under-resourced, thus making it challenging to train deep neural models for them. Hence, we propose a multi-lingual transfer training regime where we transfer from multiple related languages that share similar typology.Comment: In Proceedings of the ACL-SIGMORPHON 2019 Shared Task: Crosslinguality and Context in Morpholog

    Hierarchical Multi Task Learning with Subword Contextual Embeddings for Languages with Rich Morphology

    Full text link
    Morphological information is important for many sequence labeling tasks in Natural Language Processing (NLP). Yet, existing approaches rely heavily on manual annotations or external software to capture this information. In this study, we propose using subword contextual embeddings to capture the morphological information for languages with rich morphology. In addition, we incorporate these embeddings in a hierarchical multi-task setting which is not employed before, to the best of our knowledge. Evaluated on Dependency Parsing (DEP) and Named Entity Recognition (NER) tasks, which are shown to benefit greatly from morphological information, our final model outperforms previous state-of-the-art models on both tasks for the Turkish language. Besides, we show a net improvement of 18.86% and 4.61% F-1 over the previously proposed multi-task learner in the same setting for the DEP and the NER tasks, respectively. Empirical results for five different MTL settings show that incorporating subword contextual embeddings brings significant improvements for both tasks. In addition, we observed that multi-task learning consistently improves the performance of the DEP component
    corecore