5,773 research outputs found

    Improving N-gram Language Models with Pre-trained Deep Transformer

    Full text link
    Although n-gram language models (LMs) have been outperformed by the state-of-the-art neural LMs, they are still widely used in speech recognition due to its high efficiency in inference. In this paper, we demonstrate that n-gram LM can be improved by neural LMs through a text generation based data augmentation method. In contrast to previous approaches, we employ a large-scale general domain pre-training followed by in-domain fine-tuning strategy to construct deep Transformer based neural LMs. Large amount of in-domain text data is generated with the well trained deep Transformer to construct new n-gram LMs, which are then interpolated with baseline n-gram systems. Empirical studies on different speech recognition tasks show that the proposed approach can effectively improve recognition accuracy. In particular, our proposed approach brings significant relative word error rate reduction up to 6.0% for domains with limited in-domain data

    Sample Efficient Text Summarization Using a Single Pre-Trained Transformer

    Full text link
    Language model (LM) pre-training has resulted in impressive performance and sample efficiency on a variety of language understanding tasks. However, it remains unclear how to best use pre-trained LMs for generation tasks such as abstractive summarization, particularly to enhance sample efficiency. In these sequence-to-sequence settings, prior work has experimented with loading pre-trained weights into the encoder and/or decoder networks, but used non-pre-trained encoder-decoder attention weights. We instead use a pre-trained decoder-only network, where the same Transformer LM both encodes the source and generates the summary. This ensures that all parameters in the network, including those governing attention over source states, have been pre-trained before the fine-tuning step. Experiments on the CNN/Daily Mail dataset show that our pre-trained Transformer LM substantially improves over pre-trained Transformer encoder-decoder networks in limited-data settings. For instance, it achieves 13.1 ROUGE-2 using only 1% of the training data (~3000 examples), while pre-trained encoder-decoder models score 2.3 ROUGE-2

    Evaluation of sentence embeddings in downstream and linguistic probing tasks

    Full text link
    Despite the fast developmental pace of new sentence embedding methods, it is still challenging to find comprehensive evaluations of these different techniques. In the past years, we saw significant improvements in the field of sentence embeddings and especially towards the development of universal sentence encoders that could provide inductive transfer to a wide variety of downstream tasks. In this work, we perform a comprehensive evaluation of recent methods using a wide variety of downstream and linguistic feature probing tasks. We show that a simple approach using bag-of-words with a recently introduced language model for deep context-dependent word embeddings proved to yield better results in many tasks when compared to sentence encoders trained on entailment datasets. We also show, however, that we are still far away from a universal encoder that can perform consistently across several downstream tasks.Comment: 15 pages, 3 figures, 11 table

    Jasper: An End-to-End Convolutional Neural Acoustic Model

    Full text link
    In this paper, we report state-of-the-art results on LibriSpeech among end-to-end speech recognition models without any external training data. Our model, Jasper, uses only 1D convolutions, batch normalization, ReLU, dropout, and residual connections. To improve training, we further introduce a new layer-wise optimizer called NovoGrad. Through experiments, we demonstrate that the proposed deep architecture performs as well or better than more complex choices. Our deepest Jasper variant uses 54 convolutional layers. With this architecture, we achieve 2.95% WER using a beam-search decoder with an external neural language model and 3.86% WER with a greedy decoder on LibriSpeech test-clean. We also report competitive results on the Wall Street Journal and the Hub5'00 conversational evaluation datasets.Comment: Accepted to INTERSPEECH 201

    Multi-scale Transformer Language Models

    Full text link
    We investigate multi-scale transformer language models that learn representations of text at multiple scales, and present three different architectures that have an inductive bias to handle the hierarchical nature of language. Experiments on large-scale language modeling benchmarks empirically demonstrate favorable likelihood vs memory footprint trade-offs, e.g. we show that it is possible to train a hierarchical variant with 30 layers that has 23% smaller memory footprint and better perplexity, compared to a vanilla transformer with less than half the number of layers, on the Toronto BookCorpus. We analyze the advantages of learned representations at multiple scales in terms of memory footprint, compute time, and perplexity, which are particularly appealing given the quadratic scaling of transformers' run time and memory usage with respect to sequence length

    A Comprehensive Survey of Grammar Error Correction

    Full text link
    Grammar error correction (GEC) is an important application aspect of natural language processing techniques. The past decade has witnessed significant progress achieved in GEC for the sake of increasing popularity of machine learning and deep learning, especially in late 2010s when near human-level GEC systems are available. However, there is no prior work focusing on the whole recapitulation of the progress. We present the first survey in GEC for a comprehensive retrospect of the literature in this area. We first give the introduction of five public datasets, data annotation schema, two important shared tasks and four standard evaluation metrics. More importantly, we discuss four kinds of basic approaches, including statistical machine translation based approach, neural machine translation based approach, classification based approach and language model based approach, six commonly applied performance boosting techniques for GEC systems and two data augmentation methods. Since GEC is typically viewed as a sister task of machine translation, many GEC systems are based on neural machine translation (NMT) approaches, where the neural sequence-to-sequence model is applied. Similarly, some performance boosting techniques are adapted from machine translation and are successfully combined with GEC systems for enhancement on the final performance. Furthermore, we conduct an analysis in level of basic approaches, performance boosting techniques and integrated GEC systems based on their experiment results respectively for more clear patterns and conclusions. Finally, we discuss five prospective directions for future GEC researches

    Parallel Iterative Edit Models for Local Sequence Transduction

    Full text link
    We present a Parallel Iterative Edit (PIE) model for the problem of local sequence transduction arising in tasks like Grammatical error correction (GEC). Recent approaches are based on the popular encoder-decoder (ED) model for sequence to sequence learning. The ED model auto-regressively captures full dependency among output tokens but is slow due to sequential decoding. The PIE model does parallel decoding, giving up the advantage of modelling full dependency in the output, yet it achieves accuracy competitive with the ED model for four reasons: 1.~predicting edits instead of tokens, 2.~labeling sequences instead of generating sequences, 3.~iteratively refining predictions to capture dependencies, and 4.~factorizing logits over edits and their token argument to harness pre-trained language models like BERT. Experiments on tasks spanning GEC, OCR correction and spell correction demonstrate that the PIE model is an accurate and significantly faster alternative for local sequence transduction.Comment: Accepted at EMNLP-IJCNLP 201

    Non-Parametric Adaptation for Neural Machine Translation

    Full text link
    Neural Networks trained with gradient descent are known to be susceptible to catastrophic forgetting caused by parameter shift during the training process. In the context of Neural Machine Translation (NMT) this results in poor performance on heterogeneous datasets and on sub-tasks like rare phrase translation. On the other hand, non-parametric approaches are immune to forgetting, perfectly complementing the generalization ability of NMT. However, attempts to combine non-parametric or retrieval based approaches with NMT have only been successful on narrow domains, possibly due to over-reliance on sentence level retrieval. We propose a novel n-gram level retrieval approach that relies on local phrase level similarities, allowing us to retrieve neighbors that are useful for translation even when overall sentence similarity is low. We complement this with an expressive neural network, allowing our model to extract information from the noisy retrieved context. We evaluate our semi-parametric NMT approach on a heterogeneous dataset composed of WMT, IWSLT, JRC-Acquis and OpenSubtitles, and demonstrate gains on all 4 evaluation sets. The semi-parametric nature of our approach opens the door for non-parametric domain adaptation, demonstrating strong inference-time adaptation performance on new domains without the need for any parameter updates.Comment: Accepted at NAACL 201

    Iterative Pseudo-Labeling for Speech Recognition

    Full text link
    Pseudo-labeling has recently shown promise in end-to-end automatic speech recognition (ASR). We study Iterative Pseudo-Labeling (IPL), a semi-supervised algorithm which efficiently performs multiple iterations of pseudo-labeling on unlabeled data as the acoustic model evolves. In particular, IPL fine-tunes an existing model at each iteration using both labeled data and a subset of unlabeled data. We study the main components of IPL: decoding with a language model and data augmentation. We then demonstrate the effectiveness of IPL by achieving state-of-the-art word-error rate on the Librispeech test sets in both standard and low-resource setting. We also study the effect of language models trained on different corpora to show IPL can effectively utilize additional text. Finally, we release a new large in-domain text corpus which does not overlap with the Librispeech training transcriptions to foster research in low-resource, semi-supervised ASRComment: INTERSPEECH 202

    The Dialogue Dodecathlon: Open-Domain Knowledge and Image Grounded Conversational Agents

    Full text link
    We introduce dodecaDialogue: a set of 12 tasks that measures if a conversational agent can communicate engagingly with personality and empathy, ask questions, answer questions by utilizing knowledge resources, discuss topics and situations, and perceive and converse about images. By multi-tasking on such a broad large-scale set of data, we hope to both move towards and measure progress in producing a single unified agent that can perceive, reason and converse with humans in an open-domain setting. We show that such multi-tasking improves over a BERT pre-trained baseline, largely due to multi-tasking with very large dialogue datasets in a similar domain, and that the multi-tasking in general provides gains to both text and image-based tasks using several metrics in both the fine-tune and task transfer settings. We obtain state-of-the-art results on many of the tasks, providing a strong baseline for this challenge.Comment: ACL 202
    corecore