4,492 research outputs found

    Improved Techniques for Adversarial Discriminative Domain Adaptation

    Get PDF
    Adversarial discriminative domain adaptation (ADDA) is an efficient framework for unsupervised domain adaptation in image classification, where the source and target domains are assumed to have the same classes, but no labels are available for the target domain. We investigate whether we can improve performance of ADDA with a new framework and new loss formulations. Following the framework of semi-supervised GANs, we first extend the discriminator output over the source classes, in order to model the joint distribution over domain and task. We thus leverage on the distribution over the source encoder posteriors (which is fixed during adversarial training) and propose maximum mean discrepancy (MMD) and reconstruction-based loss functions for aligning the target encoder distribution to the source domain. We compare and provide a comprehensive analysis of how our framework and loss formulations extend over simple multi-class extensions of ADDA and other discriminative variants of semi-supervised GANs. In addition, we introduce various forms of regularization for stabilizing training, including treating the discriminator as a denoising autoencoder and regularizing the target encoder with source examples to reduce overfitting under a contraction mapping (i.e., when the target per-class distributions are contracting during alignment with the source). Finally, we validate our framework on standard domain adaptation datasets, such as SVHN and MNIST. We also examine how our framework benefits recognition problems based on modalities that lack training data, by introducing and evaluating on a neuromorphic vision sensing (NVS) sign language recognition dataset, where the source and target domains constitute emulated and real neuromorphic spike events respectively. Our results on all datasets show that our proposal competes or outperforms the state-of-the-art in unsupervised domain adaptation.Comment: To appear in IEEE Transactions on Image Processin

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

    Full text link
    In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics. To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at \url{https://github.com/mil-tokyo/MCD_DA}Comment: Accepted to CVPR2018 Oral, Code is available at https://github.com/mil-tokyo/MCD_D

    Adaptive Semi-supervised Learning for Cross-domain Sentiment Classification

    Full text link
    We consider the cross-domain sentiment classification problem, where a sentiment classifier is to be learned from a source domain and to be generalized to a target domain. Our approach explicitly minimizes the distance between the source and the target instances in an embedded feature space. With the difference between source and target minimized, we then exploit additional information from the target domain by consolidating the idea of semi-supervised learning, for which, we jointly employ two regularizations -- entropy minimization and self-ensemble bootstrapping -- to incorporate the unlabeled target data for classifier refinement. Our experimental results demonstrate that the proposed approach can better leverage unlabeled data from the target domain and achieve substantial improvements over baseline methods in various experimental settings.Comment: Accepted to EMNLP201
    • …
    corecore