6,952 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Embeddings for word sense disambiguation: an evaluation study

    Get PDF
    Recent years have seen a dramatic growth in the popularity of word embeddings mainly owing to their ability to capture semantic information from massive amounts of textual content. As a result, many tasks in Natural Language Processing have tried to take advantage of the potential of these distributional models. In this work, we study how word embeddings can be used in Word Sense Disambiguation, one of the oldest tasks in Natural Language Processing and Artificial Intelligence. We propose different methods through which word embeddings can be leveraged in a state-of-the-art supervised WSD system architecture, and perform a deep analysis of how different parameters affect performance. We show how a WSD system that makes use of word embeddings alone, if designed properly, can provide significant performance improvement over a state-of-the-art WSD system that incorporates several standard WSD features

    Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

    Get PDF
    Word embeddings are widely used in Nat-ural Language Processing, mainly due totheir success in capturing semantic infor-mation from massive corpora. However,their creation process does not allow thedifferent meanings of a word to be auto-matically separated, as it conflates theminto a single vector. We address this issueby proposing a new model which learnsword and sense embeddings jointly. Ourmodel exploits large corpora and knowl-edge from semantic networks in order toproduce a unified vector space of wordand sense embeddings. We evaluate themain features of our approach both qual-itatively and quantitatively in a variety oftasks, highlighting the advantages of theproposed method in comparison to state-of-the-art word- and sense-based models

    Unsupervised Sense-Aware Hypernymy Extraction

    Full text link
    In this paper, we show how unsupervised sense representations can be used to improve hypernymy extraction. We present a method for extracting disambiguated hypernymy relationships that propagates hypernyms to sets of synonyms (synsets), constructs embeddings for these sets, and establishes sense-aware relationships between matching synsets. Evaluation on two gold standard datasets for English and Russian shows that the method successfully recognizes hypernymy relationships that cannot be found with standard Hearst patterns and Wiktionary datasets for the respective languages.Comment: In Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018). Vienna, Austri

    Ontology-Aware Token Embeddings for Prepositional Phrase Attachment

    Full text link
    Type-level word embeddings use the same set of parameters to represent all instances of a word regardless of its context, ignoring the inherent lexical ambiguity in language. Instead, we embed semantic concepts (or synsets) as defined in WordNet and represent a word token in a particular context by estimating a distribution over relevant semantic concepts. We use the new, context-sensitive embeddings in a model for predicting prepositional phrase(PP) attachments and jointly learn the concept embeddings and model parameters. We show that using context-sensitive embeddings improves the accuracy of the PP attachment model by 5.4% absolute points, which amounts to a 34.4% relative reduction in errors.Comment: ACL 201

    SensEmbed: Learning sense embeddings for word and relational similarity

    Get PDF
    Word embeddings have recently gained considerable popularity for modeling words in different Natural Language Processing (NLP) tasks including semantic similarity measurement. However, notwithstanding their success, word embeddings are by their very nature unable to capture polysemy, as different meanings of a word are conflated into a single representation. In addition, their learning process usually relies on massive corpora only, preventing them from taking advantage of structured knowledge. We address both issues by proposing a multifaceted approach that transforms word embeddings to the sense level and leverages knowledge from a large semantic network for effective semantic similarity measurement. We evaluate our approach on word similarity and relational similarity frameworks, reporting state-of-the-art performance on multiple datasets

    Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization

    Get PDF
    Semantic specialization is the process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with an adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.Comment: Accepted at EMNLP 201
    • …
    corecore